Skip to main content
Log in

Design of the Optimal Seismological Network in Ukraine

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

It is necessary to have reliable data on the distributions of earthquake hypocenters in the study area to solve many geological and geophysical problems, in particular, the forecast of strong earthquakes, seismic zoning and earthquake-proof construction. In turn, the completeness of the data on the distribution of earthquake hypocenters and the accuracy of their determination largely depends on the effectiveness of the observing system. The efficiency of the modern Ukrainian network of seismological observations that consists of 28 stations is estimated in this article. By the effectiveness of the seismological observation network we mean the ability of the network to record events with minimal magnitudes at certain epicentral distances and allowing us to determine its main parameters (time in the focus and coordinates of hypocenters) with minimal errors depending on the position of the earthquake hypocenter. Calculation of the minimum magnitude of earthquakes for the Ukrainian seismological network shows if each seismic station increase of susceptibility to 50,000 units then the seismological the network confidently registers earthquakes with a magnitude of 3 or more throughout the Ukraine. The errors in the determination of the coordinates of epicenters of earthquakes in latitude (δφ) (km) and in longitude (δλ) (km) do not exceed 1.0 km in the center of the network and 5.0 km on the periphery of the network. The values of errors in determining the depths of the earthquake (H) (km) centers in the center of the network does not exceed 5.0 km but on the whole territory of Ukraine does not exceed 20 km. The optimal configuration of the network of Ukrainian seismic stations based on the C-criterion of optimality, introduced earlier to the theory design of optimal experiments by one of the authors of the article, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Antonova, L. V., Aranovich, Z. I., & Kondorskaya, N. V. (1974). Magnitude and station efficiency in connection with the problem of optimizing seismic observations. Magnitude and energy classification of earthquakes (Vol. 2, pp. 195–202). Moscow: IHE AS of the USSR.

    Google Scholar 

  • Aranovich, Z. I., Akhalbedashvirli, A. M., Gotsadze, O. D., & Dekanosidze, T. A. (1977). Methodology for calculating the efficiency of a network of regional seismic stations in the Caucasus example. Questions from the automation and automation of seismic observations (pp. 27–57). Tbilisi: Metsniereba.

    Google Scholar 

  • Bartal, Y., Somer, Z., Leonard, G., Steinberg, D. M., & Horin, Y. B. (2000). Optimal seismic networks in Israel in the context of the comprehensive test ban treaty. Bulletin of the Seismological Society of America, 90(1), 151–165.

    Google Scholar 

  • Burmin, V. Y. (1976). The problems of design an experiments and the conditionality of systems of linear algebraic equations. Izvestiya Academy of Sciences of the USSR. Technical Cybernetika, 2, 195–200. (in Russian).

    Google Scholar 

  • Burmin, V. Y. (1986). The optimal location of seismic stations during the registration of nearby earthquakes. Izvestiya Academy of Sciences of the USSR. Physics of the Earth, 5, 34–42.

    Google Scholar 

  • Burmin, V. Y. (2013). Design of optimal seismic and acoustic networks. Non-statistical approach. Saarbrücken: Germany Lap Lambert Academic Publishing.

    Google Scholar 

  • Burmin, V. Y. (2019a). Assessment of the caucasus seismological network effectiveness. Seismic Instruments, 55(2), 129–135.

    Google Scholar 

  • Burmin, V. Y. (2019b). Optimal geometry for the seismological observation network in the caucasus region. Seismic Instruments, 55(3), 353–362.

    Google Scholar 

  • Burmin, V. Y., & Akhmetev, V. M. (1994). Errors in the determination of the parameters of hypocenters of nearby earthquakes, the effectiveness of the system of seismological observations. Volcanology and Seismology, 2, 109–128.

    Google Scholar 

  • Burmin, V. Y., Ly, N. T., Kondorskaya, N. V., & Akhmetyev, V. M. (1992). Analysis of the geometry of the modern network of seismic stations and determination of the position of additional stations in the territory of North Vietnam. Izvestiya RAS Physics of the Earth, 6, 123–128.

    Google Scholar 

  • Burmin, V. Y., & Van Phong, N. (2001). Planning an optimal regional network of seismological observations for Southeast Asia. Volcanology and Seismology, 1, 68–75.

    Google Scholar 

  • Burmin, V. Y., Thi, L. N., & Phuong, C. V. (2009). Evaluation of the effectiveness of modern and planning an optimal network of seismic stations in Vietnam. Seismic Instruments, 45(1), 27–35.

    Google Scholar 

  • Burmin, V. Y., Thi, L. N., Fung, T. T. H., & Le, K. K. (2017). Evaluation of the effectiveness of a new network of seismic observations in the territory of Vietnam. Seismic Instruments, 533(3), 74–86.

    Google Scholar 

  • Burmin, V. Y., Van Fong, N., & Avetisyan, A. M. (2000). Planning an optimal regional network of seismological observations on the example of Armenia. Volcanology and seismology, 6, 66–79.

    Google Scholar 

  • Burmin, V. Y., & Van Phong, N. (2001). Planning an optimal regional network of seismological observations for Southeast Asia. Volcanology and Seismology, 1, 68–75.

    Google Scholar 

  • Iosif, T., & Iosif, S. (1974). Optimization of seismic stations distribution in Romania. Studii si cercetari de geofisica, 12, 51.

    Google Scholar 

  • Iosif, T., & Skoko, D. (1974). Optimization of new station position for Vrancea and Cimpulung seismic region №Romania.). Stud tehn si econ Inst Geol, 10(2), 147–172.

    Google Scholar 

  • Kagan, Y. Y. (1999). Universality of the seismic moment-frequency relation. Pure and Applied Geophysics, 155, 537–573.

    Google Scholar 

  • Kendzer, A., Verbitsky, T., Verbitsky, S., & Verbitsky, U. (1998). Digital seismograph for regional observations and the results of its tests. Geodynamics, 1, 120–126.

    Google Scholar 

  • Kendzera, O. V., Pustovitenko, B. G., Kutas, V. V., Kulchitsbky, V. E., Verbitsky, S. T., Pronishin, R. S., Safronov, O. M., Korolov, V. O., Kalitova, I. A., Pasinkov, G. D., Stasyuk, A. F. (2008). Seismicity of Ukraine. World center of data from geoinformatics and sustainable development, Ukraine, https://wdc.org.ua/uk/node/192.

  • Kijko, A. (1977a). An algorithm for the optimum distribution of a regional seismic network—I. Pure and Applied Geophysics, 115(4), 999–1009.

    Google Scholar 

  • Kijko, A. (1977b). An algorithm for the optimum distribution of a regional seismic network—II. An analysis of the accuracy of location of local earthquakes depending on the number of seismic stations. Pure and Applied Geophysics, 115(4), 1011–1021.

    Google Scholar 

  • Kijko, A. (1981). Methods of the optimal planning of regional seismic networks. In Vychislitel’nye metody v geofizike (Computational Methods in Geophysics) (pp. 82–84). Moscow: Nauka.

    Google Scholar 

  • Kondorskaya, N. V., Aranovich, Z. I., Solovyova, O. N., & Shebalin, N. V. (1981). Instructions on the procedure for the production and processing of observations at seismic stations ESSN USSR. Moscow: Nauka.

    Google Scholar 

  • Kushnir, A. N., Kulik, S. N., & Burakhovich, T. K. (2013). Seismicity of the platform regions of Ukraine in the areas of electrical conductivity anomalies. Physics of Earth, 3, 95–105.

    Google Scholar 

  • Lee, W. H. K., & Steward, S. W. (1981). Principles and applications of microearthquake networks. New York: Academic Press.

    Google Scholar 

  • Omelchenko O.K., Beloborodov V.N. 1968. Optimal planning of the regional seismological network. Report No.688, Computer Center of Sibirian Department of Academy Science USSR. Novosibirsk.

  • Onofrash, N. I., & Roman, A. A. (1979). Kolichestvennaya interpretatsiya makroseismicheskogo polya (Quantitative Interpretation of Macroseismic Field). Chishinau: Shtiintsa.

  • Pigulevskyy, P. I., Scherbina, S. V., Gurova, I. Y., & Svistun, V. K. (2013). Krivoy Rog earthquake on June 23, 2013. Geodynamic, 2(15), 283–285.

    Google Scholar 

  • Rabinowitz, N., & Steinberg, D. M. (1990). Optimal configuration of a seismographic network: A statistical approach. Bulletin of the Seismological Society of America, 80(1), 187–196.

    Google Scholar 

  • Sato, Y. (1965). Optimum distribution of seismic observation points. Zisin (Journal of the Seismological Society of Japan), 18(1), 9–14.

    Google Scholar 

  • Sato, Y., & Skoko, D. (1966). Optimum distribution of seismic observation points. II. Zisin (Journal of the Seismological Society of Japan)., 43(3), 451–458.

    Google Scholar 

  • Savarensky, E. F., Safronov, V. V., Peshkov, A. B., et al. (1979). Optimal placement of seismic stations from the position of minimizing the error in determining the epicenter. Physics of the Earth, 8, 64–71.

    Google Scholar 

  • Shumlianska, L. O. (2008). Mantle blocks and zones of increased permeability in the Ukrainian Shield. Geophysics Journal, 2, 135–144.

    Google Scholar 

  • Shumlianska, L. O., & Aleksandrov, A. L. (2016). The earthquake of February 3, 2015, near Sumy, Ukraine: Source parameters and focal mechanism. Seismic Instruments, 4(52), 350–359.

    Google Scholar 

  • Steinberg, D. M., Rabinowitz, N., Shimshoni, Y., & Mizrachi, D. (1995). Configuring a seismographic network for optimal monitoring of fault lines and multiple sources. Bulletin of the Seismological Society of America, 85(6), 1847–1857.

    Google Scholar 

  • Steinberg, D. M., & Rabinowitz, N. (2003). Optimal seismic monitoring for event location with application to on site inspection of the comprehensive nuclear test ban treaty. Metrika, 58(1), 31–57.

    Google Scholar 

  • Trifu, C.-I. (1983). Optimal development of a regional seismic network. Exemplification for Romania. Revue Roumaine de Physique, 28(1), 81–90.

    Google Scholar 

  • Tripolskyy, A. A., Kendzera, A. V., Farfulyak, L. V., & Mychak, S. V. (2009). Analysis of tectonic and geological and geophysical conditions within the platform part of Ukraine in order to locate seismic stations. Geophysics Journal, 31(5), 115–127.

    Google Scholar 

  • Tripolskyy, A. A., Farfulyak, L. V., & Mychak, S. V. (2012a). Features of the potentially seismogenic zone of the Ingulsky and Srednepridneprovsky megablocks of the Ukrainian shield. Geophysics Journal, 2(35), 168–178.

    Google Scholar 

  • Tripolskyy, A. A., Kalyuzhnaya, L. T., & Tripolskaya, E. A. (2012b). Prediction of possible seismogenic zones in the Dnieper-Donets paleorift. Geophysics Journal, 1(34), 95–104.

    Google Scholar 

  • Verbitsky, S. T., Stasyuk, A. F., Chuba, M. V., Pronishin, R. S., Verbitsky, J. T., & VKeleman, I. (2012). Seismicity of the carpathians in 2012 (pp. 22–29). Sevastopol: Seismological Bulletin of the Institute of Geophysics NAS Ukraine.

    Google Scholar 

  • Vvedenskaya, N. A. (1955). On accuracy in determination of source position by cross method. Trudy Geofiana, 157(3), 127–136.

    Google Scholar 

  • Uhrhammer, R. A. (1980). Analysis of small seismographic station networks. Bulletin of the Seismological Society of America, 70(4), 1369–1379.

    Google Scholar 

  • Uhrhammer, R. A. (1982). The optimal estimation of earthquake parameters. Physics of the Earth and Planetary Interiors, 30, 105–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Shumlianska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmin, V.Y., Shumlianska, L.A. Design of the Optimal Seismological Network in Ukraine. Pure Appl. Geophys. 177, 3651–3665 (2020). https://doi.org/10.1007/s00024-020-02453-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02453-9

Keywords

Navigation