Skip to main content
Log in

Seismic Hazard Analysis of Surface Level, Using Topographic Condition in the Northeast of Algeria

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The aim of this study is to conduct a probabilistic seismic hazard analysis and spatial variation of seismic hazard at the surface level for Northeast of Algeria, covering 4°E–9°E, 33°N–38°N. The most recent peak ground acceleration (PGA) attenuation relationship, along with the updated seismic catalog and the best knowledge on the seismic activity in the study area have been used to estimate the seismic hazard and its uncertainty. Two types of seismic source models, linear sources and areal sources, were considered to model the seismic sources. Different sets of ground motion prediction equations were used for different tectonic provinces to characterize the attenuation properties. The hazard estimation at bedrock level was carried out using a probabilistic approach and the results obtained from various methodologies were combined into a logic tree framework. In this paper, we generate PGA maps with 10% probability of exceedance in 50 years, for a rock site condition. The seismic site characterization of Algeria was done using topographic slope map derived from Digital elevation model data. We estimate the seismic hazard from the seismicity catalog and not from faults with recurrence rates obtained from geologic data. The hazard estimation at surface level, is achieved through the use of appropriate site amplification factors corresponding to various site classes based on topographic gradient. Spatial variation of surface level PGA for return periods of 100, 475 years and 2000 years are presented as contour maps. The maps obtained in this study are based on the assumption that the process of earthquake occurrence is inherently Poissonian, so that the probabilistic ground motion is time-independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abacha, I. (2015). Study of the seismicity of the Northeast region of Algeria. Thesis of docotrat. Ferhat Abbas-Setif University (Algeria).

  • Algermissen, S. T., & Perkins, D. M. (1976). A probabilistic estimate of maximum acceleration in rock in the contiguous United States. USGS Open File Report 76-416.p45.

  • Ambraseys, N. N., Douglas, J., Sarma, S. K., & Smith, P. M. (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration”. Bulletin of Earthquake Engineering, 3, 1–53. https://doi.org/10.1007/s10518-005-0183-0.

    Article  Google Scholar 

  • Aoudia, A., Vaccari, F., Suhadolc, P., & Meghraoui, M. (2000). Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria. Journal of Seismology, 4, 79–98.

    Article  Google Scholar 

  • Belabbes, S. (2008). Characterization of active deformation by Radar interferometry (InSAR): Blind and hidden seismic faults of the Tellian Atlas (Algeria) and the Rif (Morocco) along the African-Eurasian plate boundary.

  • Benouar, D. (1993). The seismicity of Algeria and adjacent regions during the twentieth century. PhD-Thesis, Imperial College of Science, Technology and Medicine, Univ. London, p. 712.

  • Benouar, D. (1994). Magnitude-intensity and intensity-attenuation relationships for Atlas region and Algerian earthquakes. Earthquake Engineering and Structural Dynamics, 23, 717–727.

    Article  Google Scholar 

  • Bernreuter, D. L., Savy J. B., Mensing R. W., & Chen J. C. (1989). Seismic hazard characterization of 69 nuclear plant sites East of the Rocky Mountains, NUERG/CR-5250 (Vol. 1). Washington, DC: US Nuclear Regulatory Commission.

    Google Scholar 

  • Bezzeghoud, M., Ayadi, A., Sebaï, A., Aït Messaoud, M., Mokrane, A., & Benhallou, H. (1996). Seismicity of Algeria between 1365 and 1989: Map of maximum observed intensities (MOI). Avances en Geofisica y Geodesia, I, IGN, Madrid, pp. 107–114.

  • Bommer, J. J. (2003). Uncertainty about the uncertainty in seismic hazard analysis. Engineering Geology, 70(1/2), 165–168.

    Article  Google Scholar 

  • Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic trees for ground-motion prediction equations in seismic hazard analysis. Bulletin of Seismological Society of America, 95, 377–389.

    Article  Google Scholar 

  • Borcherdt, R. D., & Gibbs, J. F. (1976). Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America, 66, 467–500.

    Article  Google Scholar 

  • Boudiaf, M. A. (1996). Seismotectonic study of the region of Algiers and Kabylie (Algeria). PhD thesis, University of Montpellier, p. 274.

  • Bounif, M. A., Haessler, H., & Meghraoui, M. (1987). The Constantine earthquake of October 27, 1985: Surface ruptures and aftershock study. Earth and Planetary Science Letters, 85, 451–460.

    Article  Google Scholar 

  • Coiffait, PhE. (1992). A post-nappe basin in its structural framework: The example of the Constantine basin (North-East Algeria). PhD Thesis, University of Nancy.

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.

    Article  Google Scholar 

  • Cramer, H. (1961). Mathematical methods of statistics (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • DeMets, C., Gordon, R. C., Argus, D. F., & Stein, S. (1990). Current plate motion. Geophysical Journal International, 101, 425–478.

    Article  Google Scholar 

  • Deschamps, A., Bezzeghoud, M., & Bounif, A. (1991). Seismological study of the Constantine (Algeria) earthquake (27 Octubre 1985). In J. Mezcua & A. Udías (Eds.), Seismicity, Seismotectonics and Seismic Risk of the Ibero-Maghrebian Región (pp. 163–173). Madrid: Monografia 8, IGN.

    Google Scholar 

  • Domzig, A., (2006). Active and recent deformation, and sedimentary tectonic structuration of the Algerian submarine margin. PhD thesis, Dissertation, Inst. Univ. Eur. de la Mer, Brest Univ., Brittany, France, p. 333.

  • Eurocode-8. (2003). BS-EN 1998-1, Design of structures for earthquake resistance e part 1: General rules, seismic actions and rules for buildings. Brussels: European Committee for Standardization.

    Google Scholar 

  • Evernden, J., & Thomson, J. M. (1985). Predicting seismic intensities. Reston: U.S. Geological Survey.

    Google Scholar 

  • Frankel, A. (1995). Mapping seismic hazard in the Central and eastern United States. Seismol Res Lett 66(4):8–21

    Article  Google Scholar 

  • Geomatrix Consultants. (1993). Probabilistic seismic hazard analysis computer program: A user manual.

  • Guemache, M. A. (2010). Geodynamic evolution of the seismogenic basins of Algiers (Algeria): Multidisciplinary approach (geological and geophysical methods). PhD Thesis, USTHB, Order No.: 01/2010-D/S.T. Algiers.

  • Gutenberg, B., & Richter, C. F. (1954). Seismicity of the earth and associated phenomena (p. 310). Princeton: Princeton University Press.

    Google Scholar 

  • Hamdache, M., Bezzeghoud, M., & Mokrane, M. (1998). Estimation of Seismic hazard parameters in the northern part of Algeria. Pure and Applied Geophysics, 151, 101–117.

    Article  Google Scholar 

  • Hamdache, M., & Retief, S. J. P. (2001). Site-specific seismic hazard estimation in the main seismogenic zones of north Algeria. Pure Applied Geophysics, 158, 1677–1690.

    Article  Google Scholar 

  • Hamidatou, M., & Sbartai, B. (2016). Deterministic assessment of seismic risk in Constantine city. Northeast Algeria Nat Hazards. https://doi.org/10.1007/s11069-016-2693-2.

    Article  Google Scholar 

  • Hamidatou, M., & Sbartai, B. (2017). Probabilistic seismic hazard assessment in the Constantine region, Northeast of Algeria. Arabian Journal of Geoscience. https://doi.org/10.1007/s12517-017-2876-5.

    Article  Google Scholar 

  • Harbi, A. (1996). The Algerian Eastern margin: Results of a study by seismic reflection (Vol. 762, p. 124). Algiers: C.R.A.A.G.

    Google Scholar 

  • Harbi, A. (2001). Analysis of seismicity and highlighting accidents Assets in North-East Algeria. PhD Thesis, University of Algiers.

  • Harbi, A., Antonella, P., & Giuliano, F. P. (2010). Seismicity of Eastern Algeria: A revised and extended earthquake catalogue. Natural Hazards. https://doi.org/10.1007/s11069-009-9497-6.

    Article  Google Scholar 

  • Harbi, A., Maouche, S., & Ayadi, A. (1999). Neotectonics and associate seismicity in the Eastern Tellian Atlas of Algeria. Journal of Seismology, 3, 95–104.

    Article  Google Scholar 

  • Hatzfeld, D. (1978). Seismotectonic study of the Ibero-Maghrebian collision zone. Ph.D., Thesis, Grenoble (France), p. 281.

  • IBC. (2009). International building code. Washington: International Code Council.

    Google Scholar 

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, Mmax. Pure Applied Geophysics, 161, 1655–1681.

    Article  Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake parameters from incomplete data files, Part II. Incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82, 120–134.

    Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59(4), 674–700. https://doi.org/10.2478/s11600-011-0012-6.

    Article  Google Scholar 

  • McGuire, R. K. (1976). FORTRAN computer program for seismic risk analysis. US Geol Surv, Open File Rep No. 76-67.

  • McGuire, R. K. (1978). FRISK: Computer program for seismic risk analysis using faults as earthquake sources. U.S. Geological Survey. Open file report 78-1007.

  • McGuire, R. K., & Arabasz, W. J. (1990). An introduction to probabilistic seismic hazard analysis. In S. H. Ward (Ed.), Geotechnical and environmental geophysics (Vol. 3, pp. 333–353). Tulsa: Society of Exploration Geophysicists.

    Chapter  Google Scholar 

  • Meghraoui, M. (1988). Geology of seismic zones of northern Algeria, active tectonics, paleoseismology, and seismotectonic synthesis. PhD Thesis, University of Paris-Orsay, p. 356.

  • Midorikawa, S. (1987). Prediction of iso-seismal map in the Kanto Plain due to hypothetical earthquake. Journal of Structural Engineering, 33B, 43–48.

    Google Scholar 

  • Miller, A. C., & Rice, T. R. (1983). Discrete approximation of probability distributions. Management Science, 29(3), 352–362.

    Article  Google Scholar 

  • Mokrane, A., Ait Messaoud, A., Sebai, A., Ayadi, A., & Bezzeghoud, M. (1994). The earthquakes in Algeria from 1365 to 1992. Algiers-Bouzaréah: Publication of CRAAG, ESS Department.

    Google Scholar 

  • Mortgat, C. P., & Shah, H. C. (1978). Seismic hazard analysis of Algeria, technical report, the John A (p. 97). California: Blume Earthquake Engineering Center.

    Google Scholar 

  • Ordaz, M., Martinelli, F., Aguitar, A., Arboleda, J., Meletti, C., & Amico, V. D. (2012). CRISIS 2007: Program for computing seismic hazard, Ver. 4.4. Instituto de Ingenieria, UNAM, Mexico. Paper 1360.

  • Pelàez, J. A., Hamdache, M., & Pezcasado, C. (2005). Updating the probabilistic seismic hazard values of northern Algeria with the 21 May 2003 M = 6.8 Algiers earthquake included. Pure Applied Geophysics, 162(2005), 2163–2177.

    Article  Google Scholar 

  • Pelàez, J. A., Hamdache, M., & Pezcasado, C. (2006). Seismic hazard in terms of spectral accelerations and uniform hazard spectra in northern Algeria. Pure and Applied Geophysics, 163, 119–135.

    Article  Google Scholar 

  • Perrey, A. (1848). Note on earthquakes in 1847. Bulletins of the Royal Academy of Sciences, Arts and Fine Arts of Belgium, 1st series, t. 15, part 1, n°5, pp. 442–454.

  • Raghukanth, S. T. G., & Iyengar, R. N. (2007). Estimation of seismic spectral acceleration in Peninsular India. Journal of Earth System Sciences, 116(3), 199–214.

    Article  Google Scholar 

  • Raghunandan, M. E. (2012). Effect of soil layering on the ground response parameters: A parametric study (2012). Natural Hazards, 63, 1115–1128.

    Article  Google Scholar 

  • Rothé, J. P. (1950). The Kherrata earthquakes and the seismicity of Algeria. Bull. Serv. Cart. Geol. Algeria, 4th Ser., Geophysics, n. 3.

  • Roussel, J. (1973). Active areas and frequency of earthquakes in Algeria 1716–1970. Bulletin Society History Natural North Africa, 64(3), 11–227.

    Google Scholar 

  • RPA. [Rules of Algerian earthquake]. (2003). CGS, Algeria.

  • Sadigh, K., Chang, C. Y., Abrahamson, N. A., Chiou, S. J., & Power, M. S. (1993). Specification of long period ground motion. Updated attenuation relationships for rock site conditions and adjustment factors for near fault effects, Proceedings of ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, 11–12 March, San Francisco, CA, pp. 59–70. Seismological Research Letters, 66(4), 8–21.

    Google Scholar 

  • Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., et al. (2007). Kinematics of the Western Africa–Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180–1200.

    Article  Google Scholar 

  • Shima, E. (1978). Seismic microzoning map of Tokyo. Proceeding of Second International Conference on Microzonation, 1, 433–443.

    Google Scholar 

  • Sitharam, T. G., Sreevalsa, Kolathayar, & Naveen, James. (2015). Probabilistic assessment of surface level seismic hazard in India using topographic gradient as a proxy for site condition. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2014.06.002.

    Article  Google Scholar 

  • Stromeyer, D., & Gottfried, Grünthal. (2015). Capturing the uncertainty of seismic activity rates in probabilistic seismic-hazard assessments. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120140185.

    Article  Google Scholar 

  • Vila, J. M. (1977). Constantine’s geological map (1/200 000) and its note, produced in 1977 and published by the Ministry of Industry and Energy, Mines and Geology Department, Geological Map Service of Algeria.

  • Vila, J. M. (1980). The alpine chain of eastern Algeria and Algerian-Tunisian borders. PhD-Thesis, Univ. Paris VI, p. 633.

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Yelles-Chaouche, A. K., Boudiaf, A., Djellit, H., & Bracène, R. (2006). The active tectonics of the northern Algerian region. Rendus Geosciences, 338, 126–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouloud Hamidatou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidatou, M., Yahia, M., Yelles-Chaouche, A. et al. Seismic Hazard Analysis of Surface Level, Using Topographic Condition in the Northeast of Algeria. Pure Appl. Geophys. 178, 823–846 (2021). https://doi.org/10.1007/s00024-019-02310-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02310-4

Keywords

Navigation