Skip to main content
Log in

The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gökova (SE Aegean Sea)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On July 20, 2017 22:31 UTC, a strong Mw = 6.6 earthquake occurred at shallow depth between Kos Island (Greece) and Bodrum (Turkey). We derive a co-seismic fault model from joint inversion of geodetic data (GNSS and InSAR) assuming that the earthquake can be modelled by the slip of a rectangular fault buried in an elastic and homogeneous half-space. The GNSS observations constrain well most of the model parameters but do not permit to discriminate between south- and north-dipping planes. However, the interferograms, produced from C-band ESA Sentinel 1 data, give a clear preference to the north-dipping plane. We also map surface motion away from the satellite along the Turkish coast (from Bodrum towards the east) which reached about 17 cm onshore islet Karaada. The best-fit model is obtained with a 37° north-dipping, N283°E striking normal fault, in agreement with the published moment tensor solutions. The resolved slip vector is dominantly normal with a slight component of left-lateral motion (15°). The surface projection of the seismic fault outcrops in the Gökova ridge area, a well-developed bathymetric feature inside the western Gulf of Gökova. Our geodetic model fits the pattern of the shallow, north-dipping aftershocks obtained from rigorous relocation of all available recordings in the region (about 1120 events; relocated mainshock is at 36.955°N, 27.448°E; depth at 9.2 km ± 0.5 km). The relocated aftershocks also indicate clustering at both ends of the rupture and seismicity triggering mainly towards the east and the north, within 2 weeks following the mainshock. We also analysed regional GPS data (interseismic velocities) and obtained an extension rate of 3.2 mm/yr across the Gökova rift, along a direction N165°E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Akyol, N., Zhu, L., Mitchell, B. J., Sözbilir, H., & Kekovalı, K. (2006). Crustal structure and local seismicity in western Anatolia. Geophysical Journal International, 166(3), 1259–1269. https://doi.org/10.1111/j.1365-246X.2006.03053.x.

    Article  Google Scholar 

  • Ambraseys, N. N. (2001). Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International, 145, 471–485. https://doi.org/10.1046/j.0956-540x.2001.01396.x.

    Article  Google Scholar 

  • Basili, R., Kastelic V., Demircioglu M. B., Garcia Moreno D., Nemser E. S., Petricca P., Sboras S. P., Besana-Ostman G. M., Cabral J., Camelbeeck T., Caputo R., Danciu L., Domac H., Fonseca J., García-Mayordomo J., Giardini D., Glavatovic B., Gulen L., Ince Y., Pavlides S., Sesetyan K., Tarabusi G., Tiberti M. M., Utkucu M., Valensise G., Vanneste K., Vilanova S., Wössner J. (2013). The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/, https://doi.org/10.6092/ingv.it-share-edsf.

  • Beckers, A., Hubert-Ferrari, A., Beck, C., Bodeux, S., Tripsanas, E., Sakellariou, D., et al. (2015). Active faulting at the western tip of the Gulf of Corinth, Greece, from high-resolution seismic data. Marine Geology, 360, 55–69. https://doi.org/10.1016/j.margeo.2014.12.003.

    Article  Google Scholar 

  • Bertiger, W., et al. (2010). Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5), 327–337.

    Article  Google Scholar 

  • Blewitt, G., Hammond, W. C., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos. https://doi.org/10.1029/2018EO104623.

    Article  Google Scholar 

  • Briole, P. (2017). Modelling of earthquake slip by inversion of GNSS and InSAR data assuming homogenous elastic medium. Zenodo. https://doi.org/10.5281/zenodo.1098399.

    Article  Google Scholar 

  • Briole, P. et al. (2018). The June 12, 2017 M6. 3 Lesvos offshore earthquake sequence (Aegean Sea, Greece): Fault model and ground deformation from seismic and geodetic observations. EGU General Assembly Conference Abstracts 20, 18189.

  • Briole, P., De Natale, G., Gaulon, R., Pingue, F., & Scarpa, R. (1986). Inversion of geodetic data and seismicity associated with the Friuli earthquake sequence (1976–1977). Annales Geophysicae, 4(B4), 481–492.

    Google Scholar 

  • Briole, et al. (2015). The seismic sequence of January-February 2014 at Cephalonia Island (Greece): Constraints from SAR interferometry and GPS. Geophysical Journal International, 203(3), 1528–1540. https://doi.org/10.1093/gji/ggv353.

    Article  Google Scholar 

  • Brüstle, A., (2012). Seismicity of the eastern Hellenic Subduction Zone, PhD thesis, Ruhr-Universität, Bochum.

  • Caputo, R., Pavlides, S. (2013). The Greek Database of Seismogenic Sources (GreDaSS), version 2.0.0: A compilation of potential seismogenic sources (Mw > 5.5) in the Aegean Region. http://gredass.unife.it/, https://doi.org/10.15160/unife/gredass/0200

  • Cattin, R., Briole, P., Lyon-Caen, H., Bernard, P., & Pinettes, P. (1999). Effects of superficial layers on coseismic displacements for a dip-slip fault and geophysical implications. Geophysical Journal International, 137, 149–158. https://doi.org/10.1046/j.1365-246x.1999.00779.x.

    Article  Google Scholar 

  • Cowie, P. A., Roberts, G. P., Bull, J. M., & Visini, F. (2012). Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings. Geophysical Journal International, 189, 143–160. https://doi.org/10.1111/j.1365-246X.2012.05378.x.

    Article  Google Scholar 

  • Das, S., & Henry, C. (2003). Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, 41(3), 1013. https://doi.org/10.1029/2002RG000119.

    Article  Google Scholar 

  • EGELADOS project at Ruhr-University Bochum web site http://www.gmg.ruhr-uni-bochum.de/geophysik/seismology/research/egelados.html (last accessed Nov. 28, 2018)

  • Elliott, J. R., Nissen, E. K., England, P. C., Jackson, J. A., Lamb, S., Li, Z., et al. (2012). Slip in the 2010–2011 Canterbury earthquakes, New Zealand. Journal of Geophysical Research, 117, B03401. https://doi.org/10.1029/2011JB008868.

    Article  Google Scholar 

  • Emre, Ö., Duman, T. Y., Özalp, S., et al. (2016). Active fault database of Turkey. Bull Earthquake Eng, 2, 44. https://doi.org/10.1007/s10518-016-0041-2.

    Article  Google Scholar 

  • Feng, W., Tian, Y., Zhang, Y., Samsonov, S., Almeida, R., & Liu, P. (2017). A Slip Gap of the 2016 Mw 6.6 Muji, Xinjiang, China, Earthquake Inferred from Sentinel-1 TOPS Interferometry. Seismological Research Letters, 88, 1054–1064. https://doi.org/10.1785/0220170019.

    Article  Google Scholar 

  • Floyd, M. A., et al. (2010). A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research, 115, B10403. https://doi.org/10.1029/2009JB007040.

    Article  Google Scholar 

  • Friederich, W., Brüstle, A., Küperkoch, L., & Meier, T. (2013). Focal mechanisms in the Southern Aegean from temporary seismic networks—Implications for the regional stress field and ongoing deformation processes. Solid Earth Discuss, 5, 1721–1770. https://doi.org/10.5194/sed-5-1721-2013.

    Article  Google Scholar 

  • Ganas et al. (2017a). Co-seismic deformation and preliminary fault model of the July 20, 2017 M6.6 Kos earthquake, Aegean Sea. Report published on 30 July 2017 with EMSC https://www.emsc-csem.org/Files/event/606346/Kos_report_30-7-2017.pdf

  • Ganas, A. et al. (2018). The July 20, 2017 M6.6 Kos-Bodrum earthquake: seismic and geodetic evidence for a north-dipping, normal fault at the western end of the Gulf of Gökova, SE Aegean Sea, Geophysical Research Abstracts 20, EGU2018-9262.

  • Ganas, A., Briole, P., Elias, P., Korkouli, P., Moshou, A., Valkaniotis, S., Rogier, M., Foumelis, M., Argyrakis, P., Parcharidis, I. (2017b). Preliminary characteristics of the June 12, 2017 M6.3 Plomari earthquake sequence (Lesvos, Greece) from seismic and geodetic data, Safe Athens 2017 Book of Abstracts, page 16.

  • Ganas, A., Chousianitis, K., Batsi, E., Kolligri, M., Agalos, A., Chouliaras, G., et al. (2013a). The January 2010 Efpalion earthquakes (Gulf of Corinth, Central Greece): earthquake interactions and blind normal faulting. Journal of Seismology, 17(2), 465–484. https://doi.org/10.1007/s10950-012-9331-6.

    Article  Google Scholar 

  • Ganas, A., Chousianitis, K., Drakatos, G., Papanikolaou, M., Argyrakis, P. & Kolligri, M. (2011). NOANET: High-rate GPS Network for Seismology and Geodynamics in Greece. Geophysical Research Abstracts, Vol. 13, EGU2011-4840, 2011, EGU General Assembly 2011.

  • Ganas, A., Drakatos, G., Rontogianni, S., Tsimi, C., Petrou, P., & Papanikolaou, M. (2008). NOANET: The new permanent GPS network for Geodynamics in Greece. Geophysical Research Abstracts, Vol. 10, EGU2008-A-04380.

  • Ganas, A., Oikonomou, A., & Tsimi, C. (2013b). NOAfaults: A digital database for active faults in Greece. Bulletin Geological Soc, 47, 518–530. https://doi.org/10.12681/bgsg.11079.

    Article  Google Scholar 

  • Ganas, A., & Parsons, T. (2009). Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. Journal of Geophysical Research, 114, B06404. https://doi.org/10.1029/2008JB005599.

    Article  Google Scholar 

  • Ganas, A., Sokos, E., Agalos, A., Leontakianakos, G., & Pavlides, S. (2006). Coulomb stress triggering of earthquakes along the Atalanti Fault, central Greece: Two April 1894 M6 + events and stress change patterns. Tectonophysics, 420, 357–369.

    Article  Google Scholar 

  • Geist, E., & Lynett, P. (2014). Source process in the probabilistic assessment of Tsunami hazards. Oceanography, 27(2), 86–93. https://doi.org/10.5670/oceanog.2014.43.

    Article  Google Scholar 

  • Geist, E. L., & Parsons, T. (2005). Probabilistic analysis of tsunami hazards. Natural Hazards, 37(3), 277–314.

    Article  Google Scholar 

  • Gianniou, M. (2011). Detecting permanent displacements caused by earthquakes using data from the HEPOS network, EUREF 2011 Symposium, May 25-28 2011. Moldova: Chisinau.

    Google Scholar 

  • Godano, M., Deschamps, A., Lambotte, S., Lyon-Caen, H., Bernard, P., & Pacchiani, F. (2014). Focal mechanisms of earthquake multiplets in the western part of the Corinth Rift (Greece): influence of the velocity model and constraints on the geometry of the active faults. Geophysical Journal International, 197, 1660–1680. https://doi.org/10.1093/gji/ggu059.

    Article  Google Scholar 

  • Görür, N., Şengör, A. M. C., Sakınç, M., Tüysüz, O., Akkök, R., Yiğitbaş, E., et al. (1995). Rift formation in the Gökova region, southwest Anatolia: Implications for the opening of the Aegean Sea. Geological Magazine, 132, 637–650.

    Article  Google Scholar 

  • USGS https://earthquake.usgs.gov/earthquakes/eventpage/us20009ynd#moment-tensor

  • Grigoriadis, V. N., Tziavos, I. N., Tsokas, G. N., & Stampolidis, A. (2016). Gravity data inversion for Moho depth modeling in the Hellenic area. Pure and Applied Geophysics, 173, 1223–1241. https://doi.org/10.1007/s00024-015-1174-y.

    Article  Google Scholar 

  • Gürer, Ö. F., Sangu, E., Özburan, M., Gürbüz, A., & Sarıca-Filoreau, N. (2013). Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of SW Turkey. International Journal of Earth Sciences, 25, 24. https://doi.org/10.1007/s00531-013-0909-1.

    Article  Google Scholar 

  • Gürer, Ö. F., & Yilmaz, Y. (2002). Geology of the Ören and surrounding areas, SW Anatolia. Turkish Journal of Earth Sciences, 11, 1–13.

    Google Scholar 

  • Howell, A., Jackson, J., Copley, A., McKenzie, D., & Nissen, E. (2017). Subduction and vertical coastal motions in the eastern Mediterranean. Geophysical Journal International, 211(1), 593–620. https://doi.org/10.1093/gji/ggx307.

    Article  Google Scholar 

  • Irmak, S. (2013). Focal mechanisms of small-moderate earthquakes in Denizli Graben (SW Turkey). Earth Planets Space, 65, 943–955.

    Article  Google Scholar 

  • İşcan, Y., Tur, H., & Gökaşan, E. (2013). Morphologic and seismic features of the Gulf of Gökova, SW Anatolia: Evidence of strike-slip faulting with compression in the Aegean extensional regime. Geo-Marine Letters, 33(1), 31–48.

    Article  Google Scholar 

  • Kapetanidis, V. (2017). Spatiotemporal patterns of microseismicity for the identification of active fault structures using seismic waveform cross-correlation and double-difference relocation. PhD dissertation, National and Kapodistrian University of Athens.

  • Karakonstantis, A. (2017). 3-D simulation of crust and upper mantle structure in the broader Hellenic area through Seismic Tomography. PhD dissertation, National and Kapodistrian University of Athens (in Greek).

  • Karasözen, E., et al. (2018). The 2017 July 20 Mw 66 Bodrum-Kos earthquake illuminates active faulting in the Gulf of Gökova, SW Turkey. Geophysical Journal International, 214(1), 185–199. https://doi.org/10.1093/gji/ggy114.

    Article  Google Scholar 

  • King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953.

    Google Scholar 

  • Kiratzi, A., & Koskosidi, A. (2018). Constraints on the near-source motions of the Kos-Bodrum 20 July 2017 Mw6.6 earthquake, 16th ECEE conference, Thessaloniki.

  • Kiratzi, A., & Louvari, E. (2003). Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. Journal of Geodynamics, 36(1–2), 251–274.

    Article  Google Scholar 

  • Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research, 99, 19635–19646. https://doi.org/10.1029/93JB03138.

    Article  Google Scholar 

  • Klein, F. W. (1989). User’s guide to HYPOINVERSE, a program for VAX computers to solve earthquake locations and magnitudes. U.S Geological Survey Open-File Report, 89–314, 1–58.

    Google Scholar 

  • Kokkalas, S., & Doutsos, T. (2001). Strain-dependent stress field and plate motions in the south-east Aegean region. Journal of Geodynamics, 32(3), 311–332. https://doi.org/10.1016/S0264-3707(01)00035-7.

    Article  Google Scholar 

  • Konca, A. O. et al. (2018). The Geometry and Coseismic Slip of 2017 Mw 6.6 Bodrum-Kos Earthquake Inferred from Geodetic, Seismic Data and Aftershocks, Geophysical Research Abstracts, Vol. 20, EGU2018-7442.

  • Kouskouna, V., Sesetyan, K., & Stucchi, M. (2017). The 1933 Kos earthquake: a preliminary study, Gruppo Nazionale di Geofisica della Terra Solida 36o Convegno Nazionale, 14-16/11/2017, Trieste.

  • Kreemer, C., & Chamot-Rooke, N. (2004). Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophysical Journal International, 157, 1377–1392. https://doi.org/10.1111/j.1365-246X.2004.02270.x.

    Article  Google Scholar 

  • Kurt, H., Demirbağ, E., & Kuşçu, İ. (1999). Investigation of the submarine active tectonism in the Gulf of Gökova, southwest Anatolia–southeast Aegean Sea, by multi-channel seismic reflection data. Tectonophysics, 305, 477–496.

    Article  Google Scholar 

  • Makropoulos, K., Kaviris, G., & Kouskouna, V. (2012). An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Natural Hazards and Earth Systems Sciences, 12, 1425–1430.

    Article  Google Scholar 

  • Melgar, D., Ganas, A., Geng, J., Liang, C., Fielding, E. J., & Kassaras, I. (2017). Source characteristics of the 2015 Mw 6.5 Lefkada, Greece, strike-slip earthquake. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2016JB013452.

    Article  Google Scholar 

  • Nicol, A., Walsh, J., Villamor, P., Seebeck, H., & Berryman, K. R. (2010). Normal fault interactions, paleoearthquakes and growth in an active rift. Journal of Structural Geology, 32, 1101–1113.

    Article  Google Scholar 

  • Nomikou, P. (2004). Geodynamic of Dodecanese Islands: Kos and Nisyros Volcanic Field. PhD thesis Department of Geology and Geoenvironment, University of Athens, p. 470.

  • Nomikou, P., & Papanikolaou, D. (2011). Extension of active fault zones on Nisyros volcano across the Yali-Nisyros Channel based on onshore and offshore data. Marine Geophysical Researches, 32(1/2), 181–192. https://doi.org/10.1007/s11001-011-9119-z.

    Article  Google Scholar 

  • Nomikou, P., Papanikolaou, D., Alexandri, M., Sakellariou, D., & Rousakis, G. (2013). Submarine volcanoes along the Aegean volcanic arc. Tectonophysics, 597–598, 123–146. https://doi.org/10.1016/j.tecto.2012.10.001.

    Article  Google Scholar 

  • Ocakoğlu, N., Nomikou, P., İşcan, Y., et al. (2018). Evidence of extensional and strike-slip deformation in the offshore Gökova-Kos area affected by the July 2017 Mw 66 Bodrum-Kos earthquake, eastern Aegean Sea. Geo-Marine Letters, 38, 211. https://doi.org/10.1007/s00367-017-0532-4.

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half space. Bulletin of the Seismological Society of America, 82, 1018–1040.

    Google Scholar 

  • Panagiotopoulos, D. G. (1984). Travel time curves and crustal structure in the southern Balkan region, PhD thesis, Aristotle Univ. of Thessaloniki, Thessaloniki, p. 159 (in Greek).

  • Papadimitriou, P., Chousianitis, K., Agalos, A., Moshou, A., Lagios, E., & Makropoulos, K. (2012). The spatially extended 2006 April Zakynthos (Ionian Islands, Greece) seismic sequence and evidence for stress transfer. Geophysical Journal International, 190, 1025–1040. https://doi.org/10.1111/j.1365-246X.2012.05444.x.

    Article  Google Scholar 

  • Papadimitriou, P., Kassaras, I., Kaviris, G., Tselentis, G.-A., Voulgaris, N., Lekkas, E., et al. (2018). The 12th June 2017 Mw=6.3 Lesvos earthquake from detailed seismological observations. Journal Geodynamics, 115, 23–42. https://doi.org/10.1016/j.jog.2018.01.009.

    Article  Google Scholar 

  • Papadopoulos, G., et al. (2014). Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology, 354, 81–109.

    Article  Google Scholar 

  • Papanikolaou, D. J., & L. H. Royden (2007). Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—Or what happened at Corinth? Tectonics, 26, TC5003, https://doi.org/10.1029/2006tc002007.

    Article  Google Scholar 

  • Papathanassiou, G., Valkaniotis, S., & Pavlides, S. (2019). The July 20, 2017 Bodrum-Kos, Aegean Sea Mw = 6.6 earthquake; preliminary field observations and image-based survey on a lateral spreading site. Soil Dynamics and Earthquake Engineering, 116, 668–680. https://doi.org/10.1016/j.soildyn.2018.10.038.

    Article  Google Scholar 

  • Papazachos, B. C., Mountrakis, D. M., Papazachos, C. B., Tranos, M. D., Karakaisis, G. F., and Savvaidis, A. S. (2001). The faults which have caused the known major earthquakes in Greece and surrounding region between the 5th century BC and today. In Proceedings of 2nd National Conference Anti-Seismic Engineering and Technical Seismology, 17–26, Technical Chamber of Greece, Thessaloniki, Greece.

  • Papazachos, B. C., & Papazachou, C. B. (1997). The earthquakes of Greece (p. 304). Thessaloniki: Ziti Publ.

    Google Scholar 

  • Parsons, T. (2005). A hypothesis for delayed dynamic earthquake triggering. Geophysical Research Letters. https://doi.org/10.1029/2004gl021811.

    Article  Google Scholar 

  • Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., & Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488(1–4), 22–30. https://doi.org/10.1016/j.tecto.2009.05.027.

    Article  Google Scholar 

  • Reilinger, R., McClusky, S., Vernant, P., et al. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2005jb004051.

    Article  Google Scholar 

  • Sakellariou, D., Mascle, J., & Lykousis, V. (2013). Strike slip tectonics and transtensional deformation in the Aegean region and the Hellenic arc: Preliminary results. Bulletin of the Geological Society of Greece, 47, 647–656.

    Article  Google Scholar 

  • Saltogianni, V., Taymaz, T., Yolsal-Cevikbilen, S., Eken, T., Gianniou, M., Ocalan, T., et al. (2017). Fault-model of the 2017 Kos-Bodrum (east Aegean Sea) Mw 6.6 earthquake from inversion of seismological and GPS data—Preliminary Report. EMSC. http://www.emsc-csem.org.

  • Sodoudi, F., Kind, R., Hatzfeld, D., Priestley, K., Hanka, W., Wylegalla, K., et al. (2006). Lithospheric structure of the Aegean obtained from P and S receiver functions. Journal of Geophysical Research: Solid Earth, 111, B12307. https://doi.org/10.1029/2005JB003932.

    Article  Google Scholar 

  • Sokos, E., & Zahradnik, Jiri. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34(8), 967–977. https://doi.org/10.1016/j.cageo.2007.07.005.

    Article  Google Scholar 

  • Tibaldi, A., Pasquarè, F. A., Papanikolaou, D., & Nomikou, P. (2008). Tectonics of Nisyros Island, Greece, by field and offshore data, and analogue modeling. Journal of Structural Geology, 30(12), 1489–1506.

    Article  Google Scholar 

  • Tirel, C., Gueydan, F., Tiberi, C., & Brun, J.-P. (2004). Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth and Planetary Science Letters, 228, 267–280. https://doi.org/10.1016/j.epsl.2004.10.023.

    Article  Google Scholar 

  • Tiryakioğlu, İ., Aktuğ, B., Yiğit, C. Ö., Yavaşoğlu, H. H., Sözbilir, H., Özkaymak, Ç., et al. (2018). Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw 6.6) from GPS observations. Geodinamica Acta, 30(1), 1–14. https://doi.org/10.1080/09853111.2017.1408264.

    Article  Google Scholar 

  • Toda, S., Stein, R. S., Sevilgen, V., Lin, J. (2011). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide. U.S. Geological Survey Open-File Report 2011-1060, 63, http://pubs.usgs.gov/of/2011/1060/

  • Tur, H., et al. (2015). Pliocene-Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophysics. https://doi.org/10.1016/j.tecto.2014.11.008.

    Article  Google Scholar 

  • Ulug, A., Duman, M., Ersoy, S., Özel, E., & Mert Avci, M. (2005). Late Quaternary sea level change, sedimentation and neotectonics of the Gulf of Gökova: Southeastern Aegean Sea. Marine Geology, 221(1–4), 381–395. https://doi.org/10.1016/j.margeo.2005.03.002.

    Article  Google Scholar 

  • Vernant, P., Reilinger, R., & McClusky, S. (2014). Geodetic evidence for low coupling on the Hellenic subduction plate interface. Earth and Planetary Science Letters, 385(385), 122–129. https://doi.org/10.1016/j.epsl.2013.10.018.

    Article  Google Scholar 

  • Wadati, K. (1933). On the travel time of earthquake waves. Part. II. Geophysical Magazine, 7, 101–111.

    Google Scholar 

  • Waldhauser, F. (2001). HypoDD—A program to compute double-difference hypocentre locations. U.S. Geol. Surv. Open File Rep. 01–113, 25 p.

  • Wang, R., Xia, Y., Grosser, H., Wetzel, H.-U., Kaufmann, H., & Zschau, J. (2004). The 2003 Bam (SE Iran) earthquake: precise source parameters from satellite radar interferometry. Geophysical Journal International, 159(3), 917–922. https://doi.org/10.1111/j.1365-246X.2004.02476.x.

    Article  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of American Statistical Association, 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: Improved version released, EOS Trans. AGU, 94, 409–410.

    Google Scholar 

  • Yalçıner, A., Annunziato, A., Papadopoulos, G., Güney-Doğan, G., Gökhan-Güler, H., ErayCakir, T., Özer-Sözdinler, C., Ulutaş, E., Arikawa, T., Süzen, L., Kanoğlu, U., Güler, I., Probst, P., Synolakis, C. (2017). The 20th July 2017 (22:31 UTC) Bodrum-Kos Earthquake and Tsunami: Post Tsunami Field Survey Report, http://users.metu.edu.tr/yalciner/July-21-2017-tsunami-report/Report-Field-Survey-of-July-20-2017-Bodrum-Kos-Tsunami.pdf

  • Yolsal-Çevikbilen, S., Taymaz, T., Helvacı, C. (2014). Earthquake mechanisms in the Gulfs of Gökova, Sığacık, Kuşadası, and the Simav Region (western Turkey): Neotectonics, seismotectonics and geodynamic implications. Tectonophysics, 635, 100–124. https://doi.org/10.1016/j.tecto.2014.05.001.

    Article  Google Scholar 

  • Zhu, L., Mitchell, B. J., Akyol, N., Cemen, I., & Kekovali, K. (2006). Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research, 111, B01301. https://doi.org/10.1029/2005JB003770.

    Article  Google Scholar 

  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3), 5005–5018.

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to two anonymous reviewers for their constructive reviews. We thank the NOA, EMSC, KOERI & DDA analysis groups for the provision of seismic data. Sentinel 1A images were provided free by ESA’s Sentinels Scientific Data Hub. Focal mechanism data were accessed from http://bbnet.gein.noa.gr/HL/, http://www.globalcmt.org/, http://www.geophysics.geol.uoa.gr/ Bathymetry data were retrieved from EMODNET and topography from ALOS global model (30-m). We thank Ahmed Yalçıner, Evi Nomikou, I. Parcharidis, M. Sachpazi, R. Reilinger, S. Ergintav, T. Taymaz, G. Papadopoulos and E. Lekkas for comments and discussions. We thank the HEPOS network (Greece) for providing GNSS data from their stations in Kos and Rhodes. We also thank the Greek private networks, METRICANET http://www.metricanet.gr/ and URANUS (TREE Co, http://www.uranus.gr/) and the Turkish GCM network for releasing their GNSS data. Coulomb Stress Transfer was calculated by the Coulomb v3.3 software (Toda et al. 2011). Several figures were prepared by use of GMT software (Wessel et al. 2013). P. Argyrakis acknowledges the Stavros Niarchos Foundation for its support. We acknowledge funding of this research by the project ‘‘HELPOS—Hellenic System for Lithosphere Monitoring’’ (MIS 5002697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios Ganas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganas, A., Elias, P., Kapetanidis, V. et al. The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gökova (SE Aegean Sea). Pure Appl. Geophys. 176, 4177–4211 (2019). https://doi.org/10.1007/s00024-019-02154-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02154-y

Keywords

Navigation