Skip to main content
Log in

Complex Frequency Shifted Perfectly Matched Layer Boundary Conditions for Frequency-Domain Elastic Wavefield Simulations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

To absorb unwanted seismic reflections caused by the truncated boundaries, various absorbing boundary conditions have been developed for seismic numerical modeling in both time and frequency domains. Among the various types of perfectly matched layer (PML) boundary conditions, complex frequency shifted PML (CFS-PML) has attracted much attention in time-domain wavefield simulations because it can better handle evanescent and grazing waves. In this paper, we extend the CFS-PML boundary condition to frequency-domain finite-difference seismic modeling, which has several advantages over time-domain modeling including the convenient implementation of multiple sources and a straightforward extension of adding attenuation factors. A comparison with an analytical solution is used to investigate the validity of the proposed CFS-PML algorithm. CFS-PML shows better absorbing behavior than the classical PML boundary condition in our model tests. We further implement CFS-PML for seismic wavefield simulations in an elongated elastic model and a complex model (Marmousi-II) with a free surface boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aki, K., & Richards, P. G. (2002). Quantitative seismology. Mill Valley: University Science Books.

    Google Scholar 

  • Bécache, E., Petropoulos, P. G., & Gedney, S. D. (2004). On the long-time behavior of unsplit perfectly matched layers. IEEE Transactions on Antennas and Propagation, 52, 1335–1342.

    Article  Google Scholar 

  • Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114, 185–200.

    Article  Google Scholar 

  • Cerjan, C., Kosloff, D., Kosloff, R., & Reshef, M. (1985). A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50, 705–708.

    Article  Google Scholar 

  • Chen, H., Zhou, H., & Li, Y. (2014). Application of unsplit convolutional perfectly matched layer for scalar arbitrarily wide-angle wave equation. Geophysics, 79, 313–321.

    Article  Google Scholar 

  • Clayton, R., & Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 67, 1529–1540.

    Google Scholar 

  • Collino, F., & Tsogka, C. (2001). Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66, 294–307.

    Article  Google Scholar 

  • Doyon, B. and Giroux, B., 2014. Practical aspects of 2.5D frequency-domain finite-difference modelling of viscoelastic waves: The SEG Technical Program Expanded Abstracts, 3482-3486.

  • Festa, G., Delavaud, E. and Vilotte, J.P., 2005. Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations: Geophysical Research Letters, 32.

  • Gao, Y., Song, H., Zhang, J., & Yao, Z. (2015). Comparison of artificial absorbing boundaries for acoustic wave equation modelling. Exploration Geophysics, 48, 76–93.

    Article  Google Scholar 

  • Gvozdic, B. D., & Djurdjevic, D. Z. (2017). Performance advantages of CPML over UPML absorbing boundary conditions in FDTD algorithm. Journal of Electrical Engineering, 68, 47–53.

    Article  Google Scholar 

  • Higdon, R. L. (1986). Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Mathematics of Computation, 47, 437–459.

    Google Scholar 

  • Higdon, R. L. (1987). Numerical absorbing boundary conditions for the wave equation. Mathematics of Computation, 49, 65–90.

    Article  Google Scholar 

  • Hustedt, B., Operto, S., & Virieux, J. (2004). Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling. Geophysical Journal International, 157, 1269–1296.

    Article  Google Scholar 

  • Jo, C. H., Shin, C., & Suh, J. H. (1996). An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics, 61, 529–537.

    Article  Google Scholar 

  • Komatitsch, D., & Martin, R. (2007). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72, 155–167.

    Article  Google Scholar 

  • Lan, H., & Zhang, Z. (2011). Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation. Journal of Geophysics and Engineering, 8, 275–286.

    Article  Google Scholar 

  • Li, Y., Métivier, L., Brossier, R., Han, B., & Virieux, J. (2015). 2D and 3D frequency-domain elastic wave modeling in complex media with a parallel iterative solver. Geophysics, 80, 101–118.

    Article  Google Scholar 

  • Liao, J., Wang, H., & Ma, Z. (2009). 2-D elastic wave modeling with frequency-space 25-point finite-difference operators. Applied Geophysics, 6, 259–266.

    Article  Google Scholar 

  • Liu, W., Lin, P., Lü, Q., Chen, R., Cai, H., & Li, J. (2017). Time domain and frequency domain induced polarization modeling for three-dimensional anisotropic medium. Journal of Environmental and Engineering Geophysics, 22, 435–439.

    Google Scholar 

  • Liu, Y., & Sen, M. K. (2012). A hybrid absorbing boundary condition for elastic staggered-grid modelling. Geophysical Prospecting, 60, 1114–1132.

    Article  Google Scholar 

  • Marfurt, K. J. (1984). Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 49, 533–549.

    Article  Google Scholar 

  • Marfurt, K. J., & Shin, C. S. (1989). The future of iterative modeling in geophysical exploration. Handbook of geophysical exploration: Seismic Exploration. Oxford: Elsevier.

    Google Scholar 

  • Martin, R., Komatitsch, D., & Ezziani, A. (2008). An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media. Geophysics, 73, 51–61.

    Article  Google Scholar 

  • Meza-Fajardo, K. C., & Papageorgiou, A. S. (2008). A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bulletin of the Seismological Society of America, 98, 1811–1836.

    Article  Google Scholar 

  • Moreira, R. M., Cetale Santos, M. A., Martins, J. L., Silva, D. L. F., Pessolani, R. B. V., Filho, D. M. S., et al. (2014). Frequency-domain acoustic-wave modeling with hybrid absorbing boundary conditions. Geophysics, 79, 39–44.

    Article  Google Scholar 

  • Operto, S., Virieux, J., Amestoy, P., L’Excellent, J. Y., Giraud, L., & Ali, H. B. H. (2007). 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study. Geophysics, 72, 195–211.

    Article  Google Scholar 

  • Operto, S., Virieux, J., Ribodetti, A., & Anderson, J. E. (2009). Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media. Geophysics, 74, 75–95.

    Article  Google Scholar 

  • Peng, C., & Toksöz, M. N. (1995). An optimal absorbing boundary condition for elastic wave modeling. Geophysics, 60, 296–301.

    Article  Google Scholar 

  • Pratt, R. G. (1990). Frequency-domain elastic wave modeling by finite differences: A tool for crosshole seismic imaging. Geophysics, 55, 626–632.

    Article  Google Scholar 

  • Pratt, R. G., & Worthington, M. H. (1990). Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method. Geophysical Prospecting, 38, 287–310.

    Article  Google Scholar 

  • Ren, Z., & Liu, Y. (2013). A hybrid absorbing boundary condition for frequency-domain finite-difference modelling. Journal of Geophysics and Engineering. https://doi.org/10.1088/1742-2132/10/5/054003.

    Google Scholar 

  • Roden, J. A., & Gedney, S. D. (2000). Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and optical technology letters, 27, 334–338.

    Article  Google Scholar 

  • Shin, C. (1995). Sponge boundary condition for frequency-domain modeling. Geophysics, 60, 1870–1874.

    Article  Google Scholar 

  • Taflove, A. (1998). Advances in computational electrodynamics: the finite-difference time-domain method. Boston: Artech House.

    Google Scholar 

  • Tsynkov, S. V. (1998). Numerical solution of problems on unbounded domains. A review. Applied Numerical Mathematics, 27, 465–532.

    Article  Google Scholar 

  • Wang, Y. (2015). Frequencies of the Ricker wavelet. Geophysics, 80, 31–37.

    Article  Google Scholar 

  • Yin, W., Yin, X. Y., Wu, G. C., & Liang, K. (2006). The method of finite difference of high precision elastic wave equations in the frequency domain and wave-field simulation. Chinese Journal of Geophysics, 49, 561–568.

    Google Scholar 

  • Yuan, S., Wang, S., Sun, W., Miao, L., & Li, Z. (2014). Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation. Exploration Geophysics, 45, 94–104.

    Article  Google Scholar 

  • Zeng, Y., He, J., & Liu, Q. (2001). The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics, 66, 1258–1266.

    Article  Google Scholar 

  • Zeng, C., Xia, J., Miller, R., & Tsoflias, G. (2011). Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves. Geophysics, 76, T43–T52.

    Article  Google Scholar 

  • Zhao, J., Huang, X., Liu, W., Zhao, W., Song, J., Xiong, B., et al. (2017). 2.5-D frequency-domain viscoelastic wave modelling using finite-element method. Geophysical Journal International, 211, 164–187.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Faculty Internationalization Grant at The University of Tulsa. The inverse Fourier transform was implemented by the CREWES Matlab Toolbox. The authors thank two anonymous reviewers and associate editor Dr. Andrew Gorman for their constructive suggestions and comments, which significantly improved the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Chen, J., Xu, M. et al. Complex Frequency Shifted Perfectly Matched Layer Boundary Conditions for Frequency-Domain Elastic Wavefield Simulations. Pure Appl. Geophys. 176, 2529–2542 (2019). https://doi.org/10.1007/s00024-019-02132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02132-4

Keywords

Navigation