Skip to main content
Log in

Rupture Characteristics of the 25 November 2016 Aketao Earthquake (Mw 6.6) in Eastern Pamir Revealed by GPS and Teleseismic Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The 25 November 2016 Aketao, Xinjiang earthquake occurred on the northeastern margin of the Pamir plateau, rupturing the Muji fault on the northern segment of the Kongur Extensional System. We collected coseismic offsets at 7 GPS sites, which show that the fault experienced significate dextral slip with a near-field geodetic displacement of up to 12 cm along the strike. The joint inversion of GPS data and teleseismic P waveforms suggests a complex rupture pattern characterized by the unilateral propagation slip from the epicenter to the southeast for 60 km with a total seismic moment of ~ 1.3 × 1019 Nm, corresponding to a magnitude of Mw 6.7 earthquake. Our model of slip distribution shows two major slip patches with a slip amplitude up to ~ 0.6 m, one located at shallow depths of 0–8 km close to the hypocenter with apparent surface breaks and the other, ~ 40 km to the southeast, buried at a greater depth of ~ 12 km. The rupture is dominated by a right-lateral strike slip with significant normal-slip components. The near-field GPS data enhances the spatial resolution of source model. Based on the preferred slip model, the static Coulomb Failure Stress change caused by 2016 Aketao earthquake suggests that the unzipped western and eastern ends of Muji fault and the northern segment of Kungai Fault are significantly promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altamimi, Z., Collilieux, X., & Mėtivier, L. (2011). ITRF2008: An improved solution of the international terrestrial reference frame. Journal of Geodesy, 85(8), 457–473. https://doi.org/10.1007/s00190-011-0444-4.

    Article  Google Scholar 

  • Brunel, M., Arnaud, N., Tapponnier, P., Pan, Y., & Wang, Y. (1994). Kongur Shan normal fault: Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir). Geology, 22(8), 707–710.

    Article  Google Scholar 

  • Burtman, V. S. (2000). Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics, 319, 69–92.

    Article  Google Scholar 

  • Chen, J., Li, T., Li, W. Q., & Yuan, Z. D. (2011). Late Cenozoic and present tectonic deformation in the Pamir salient, Northwestern China. Seismology and Geology, 02, 241–259.

    Google Scholar 

  • Chen, J., Li, T., Sun, J., Fang, L., Yao, Y., Li, Y., et al. (2016). Coseismic surface ruptures and seismogenic Muji fault of the 25 November 2016 Aerketao Mw6.6 earthquake in northern Pamir. Seismology and Geology, 38, 1160–1174. (in Chinese).

    Google Scholar 

  • Chen, W., & Molnar, P. (1977). Seismic moment of major earthquake and the average rate of slip in central Asia. Journal of Geophysical Research, 82, 2945–2967.

    Article  Google Scholar 

  • Feng, W. P., Tian, Y., Zhang, Y., Samsonov, S., Almeida, R., & Liu, P. (2017). A slip gap of the 2016 Mw6.6 Muji, Xinjiang, China, earthquake inferred from Sentinel-1 TOPS interferometry. Seismological Research Letters, 88(4), 1–11.

    Article  Google Scholar 

  • Herring, T., King, R., & McCluskey, S. (2010). Introduction to GAMIT/GLOBK release 10.4. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Hertzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California earthquake. Bulletin of the Seismological Society of America, 73(6A), 1553–1583.

    Google Scholar 

  • Ide, S., Takeo, M., & Yoshida, Y. (1996). Process of the kobe earthquake: Determination of spatio-temporal slip distribution by bayesian modeling. Bulletin of the Seismological Society of America, 386, 547–566.

    Google Scholar 

  • Jiang, Z., Wang, M., Wang, Y., Wu, Y., Che, S., Shen, Z., et al. (2014). GPS constrained coseismic source and slip distribution of the 2013 Mw6.6 Lushan, China, earthquake and its tectonic implications. Geophysical Research Letters, 41, 407–413. https://doi.org/10.1002/2013gl058812.

    Article  Google Scholar 

  • Jiang, G., Wen, Y., Liu, Y., Xu, X., Fang, L., Chen, G., et al. (2015). Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion. Geophysical Research Letters, 42, 3273–3281. https://doi.org/10.1002/2015GL063750.

    Article  Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body wave-III. Bulletin of the Seismological Society of America, 81, 2335–2350.

    Google Scholar 

  • King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84, 935–953.

    Google Scholar 

  • Li, W. Q., Chen, J., Yuan, Z. D., Huang, M. D., Li, T., Yu, S., et al. (2011). Coseismic surface ruptures of multi segments and seismogenic fault of the Tashkorgan earthquake in Pamir, 1895. Seismology and Geology, 33(2), 260–276.

    Google Scholar 

  • Liu, G., Wang, Q., Qiao, X., Yang, S., You, X., Zhang, R., et al. (2015a). The 25 April 2015 Nepal Ms8.1 earthquake slip distribution from joint inversion of teleseismic, static and high-rate GPS data. Chinese Journal of Geophysics, 58, 4287–4297. (in Chinese).

    Google Scholar 

  • Liu, C., Zheng, Y., Wang, J., & Xiong, X. (2015b). Kinematic rupture process of the 2014 Chile Mw8.1 earthquake constrained by strong-motion, GPS static offsets and teleseismic data. Geophysical Journal International, 202, 1137–1145.

    Article  Google Scholar 

  • Qiao, X., Wang, Q., Yang, S., Li, J., Zou, R., & Ding, K. (2015). The 2008 Nura Mw6.7 earthquake: A shallow rupture on the main pamir thrust revealed by GPS and InSAR. Geodesy and Geodynamics, 6, 91–100.

    Article  Google Scholar 

  • Qiao, X., Yu, P., Nie, Z., Li, J., Wang, X., Kuzikov, S., et al. (2017). The crustal deformation revealed by GPS and InSAR in the northwest corner of the Tarim Basin, northwestern China. Pure Applied Geophysics, 174, 1405–1423.

    Article  Google Scholar 

  • Robinson, A. C., Yin, A., Manning, C. E., Harrison, T. M., Zhang, S. H., & Wang, X. F. (2004). Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geological Society of America Bulletin., 116, 953–973.

    Article  Google Scholar 

  • Shan, B., Xiong, X., Wang, R., Zheng, Y., & Yang, S. (2013). Coulomb stress evolution along Xianshuihe-Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth and Planetary Science Letters, 377, 199–210.

    Article  Google Scholar 

  • Shen, Z. K., King, R., Agnew, D., Wang, M., Herring, T., Dong, D., et al. (2011). A unified analysis of crustal motion in Southern California, 1970-2004: The SCEC crustal motion map. Journal of Geophysical Research, 116, B11402.

    Google Scholar 

  • Shen, Z. K., Wan, Y. G., Gan, W. J., Zeng, Y. H., & Ren, Q. (2003). Viscoelastic triggering among large earthquakes along the eastern Kunlun fault system. Chinese Journal of Geophysics, 46(6), 786–795.

    Google Scholar 

  • Sippl, C., Schurr, B., Yuan, X., Mechie, J., Schneider, G. M., Orunbaev, S., et al. (2013). Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data. Journal of Geophysical Research, 118, 1438–1457.

    Google Scholar 

  • Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604.

    Article  Google Scholar 

  • Teshebaeva, K., Sudhaus, H., Echtler, H., Schurr, B., & Roessner, S. (2014). Strain partitioning at the eastern Pamir-Alai revealed through SAR data analysis of the 2008 Nura earthquake. Geophysical Journal International, 198, 760–774.

    Article  Google Scholar 

  • Wang, S., Xu, C., Wen, Y., Yin, Z., Jiang, G., & Fang, L. (2017). Slip Model for the 25 November 2016 Mw 6.6 Aketao Earthquake, Western China, Revealed by Sentinel-1 and ALOS-2 Observations. Remote Sensing, 9, 325.

    Article  Google Scholar 

  • Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X. A., et al. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294, 574–577.

    Article  Google Scholar 

  • Xie, Z., Zheng, Y., Liu, C., Shan, B., Riaz, M., & Xiong, X. (2017). An integrated analysis of source parameters, seismogenic structure, and seismic hazards related to the 2014 Ms6.3 Kangding earthquake, China. Tectonophysics, 712, 1–9.

    Article  Google Scholar 

  • Xiong, W., Tan, K., Liu, G., Qiao, X. J., & Nie, Z. S. (2015). Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal Mw7.9 earthquake. Chinese Journal Geophysics, 58(11), 4305–4316. https://doi.org/10.6038/cjg20151135.

    Google Scholar 

  • Xu, X. W., Jiang, G. Y., Yu, G. H., Wu, X. Y., Zhang, J. G., & Li, X. (2014). Discussion on seismogenic fault of the Ludian Ms6.5 earthquake and its tectonic attribution. Chinese Journal Geophysics, 57(9), 3060–3068. https://doi.org/10.6038/cjg20140931.

    Google Scholar 

  • Yin, A., Nie, S., Craig, P., Harrison, T. M., Ryerson, F. J., Xianglin, Q., et al. (1998). Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17, 1–27.

    Article  Google Scholar 

  • Yoshida, S., & Koketsu, K. (1990). Simultaneous inversion of waveform and geodetic data for the rupture process of the 1984 Naganoken-Seibu, Japan, earthquake. Geophysical Journal International, 103, 355–362.

    Article  Google Scholar 

  • Yoshida, S., Koketsu, K., Shibazaki, B., Sagiya, T., Kato, T., & Yoshida, Y. (1996). Joint inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe Earthquake. Journal of Physics Earth, 44, 437–454.

    Article  Google Scholar 

  • Yue, H., & Lay, T. (2013). Source rupture models for the Mw9.0, Tohoku earthquake from joint inversions of high-rate geodetic and seismic data. Bulletin of the Seismological Society of America, 103(2), 1242–1255.

    Article  Google Scholar 

  • Zhang, L., Li, J., Liao, W., & Wang, Q. (2016). Source rupture process of the 2015 Gorkha, Nepal Mw7.9 earthquake and its tectonic implications. Geodesy and Geodynamics, 7, 124–131.

    Article  Google Scholar 

  • Zhang, Y., Wang, R., Chen, Y., Xu, L., Du, F., Jin, M., et al. (2014). Kinematic rupture model and hypocenter relocation of the 2013 Mw6.6 Lushan earthquake constrained by strong-motion and teleseismic data. Seismological Research Letters, 88, 15–22.

    Article  Google Scholar 

  • Zhang, X., Yan, C., Xu, L., & Li, C. (2017). Source complexity of the 2016 Aketao Ms6.7 earthquake and its intensity. Chinese Journal of Geophysics, 60, 1411–1422.

    Google Scholar 

Download references

Acknowledgements

The GPS data in Aketao were from the Engineering Research Center of the China Crust Movement Observation Network and Earthquake Agency of Xinjiang Uygur Autonomous Region, Earthquake Administration of the Xinjiang Uygur Autonomous Region. Special thanks to surveyors who perform GPS observations in the Pamir plateau after Mw 6.6 Aketao earthquake. This study was sponsored partly by the National Natural Science Foundation of China (No. 2016063063, 41374030, 41574012, 41404016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, G., Qiao, X. et al. Rupture Characteristics of the 25 November 2016 Aketao Earthquake (Mw 6.6) in Eastern Pamir Revealed by GPS and Teleseismic Data. Pure Appl. Geophys. 175, 573–585 (2018). https://doi.org/10.1007/s00024-018-1798-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1798-9

Keywords

Navigation