Skip to main content
Log in

Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe, K., & Ishii, H. (1987). Distribution of maximum water levels due to the Japan Sea tsunami on 26 May 1983. Journal of the Oceanographical Society of Japan, 43, 169–182.

    Article  Google Scholar 

  • Alber, M. S., Luther, G. G., Marsden, J. E., & Robbins, J. M. (1998). Geometric phases, reduction and Lie–Poisson structure for the resonant three-wave interaction. Physica D: Nonlinear Phenomena, 123, 271–290. https://doi.org/10.1016/S0167-2789(98)00127-4.

    Article  Google Scholar 

  • Andrews, D. J. (1980). A stochastic fault model 1. Static case. Journal of Geophysical Research, 85, 3867–3877.

    Article  Google Scholar 

  • Armstrong, J. A., Bloembergen, N., Ducuing, J., & Pershan, P. S. (1962). Interactions between light waves in a nonlinear dielectric. Physical Review, 127, 1918–1939.

    Article  Google Scholar 

  • Benjamin, L. R., Flament, P., Cheung, K. F., & Luther, D. S. (2016). The 2011 Tohoku tsunami south of Oahu: High-frequency Doppler radio observations and model simulations of currents. Journal of Geophysical Research: Oceans, 121, 1133–1144. https://doi.org/10.1002/2015JC011207.

    Google Scholar 

  • Bretherton, F. P. (1964). Resonant interactions between waves. The case of discrete oscillations. Journal of Fluid Mechanics, 20, 457–479.

    Article  Google Scholar 

  • Bricker J. D., Munger S., Pequignet C., Wells J. R., Pawlak G., & Cheung K. F. (2007). ADCP observations of edge waves off Oahu in the wake of the November 2006 Kuril Islands tsunami. Geophysical Research Letters, 34. https://doi.org/10.1029/2007gl032015.

  • Bustamante M. D., & Kartashova E. (2009a). Dynamics of nonlinear resonances in Hamiltonian systems. Europhysics Letters, 85. https://doi.org/10.1209/0295-5075/1285/14004.

  • Bustamante M. D., & Kartashova E. (2009b). Effect of the dynamical phases on the nonlinear amplitudes’ evolution. Europhysics Letters, 85. https://doi.org/10.1209/0295-5075/1285/34002.

  • Carrier, G. F. (1995). On-shelf tsunami generation and coastal propagation. In Y. Tsuchiya & N. Shuto (Eds.), Tsunami: Progress in prediction, disaster prevention and warning (pp. 1–20). Dordrecht: Kluwer.

    Google Scholar 

  • Catalán, P. A., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., et al. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophysical Research Letters, 42, 2918–2925. https://doi.org/10.1002/2015GL063333.

    Article  Google Scholar 

  • Cortés, P., Catalán, P. A., Aránguiz, R., & Bellotti, G. (2017). Tsunami and shelf resonance on the northern Chile coast. Journal of Geophysical Research: Oceans, 122, 7364–7379. https://doi.org/10.1002/2017JC012922.

    Google Scholar 

  • Cree, W. C., & Swaters, G. E. (1991). On the topographic dephasing and amplitude modulation of nonlinear Rossby wave interactions. Geophysical and Astrophysical Fluid Dynamics, 61, 75–99. https://doi.org/10.1080/03091929108229037.

    Article  Google Scholar 

  • Dubinina, V. A., Kurkin, A. A., Pelinovsky, E. N., & Poloukhina, O. E. (2006). Resonance three-wave interactions of Stokes edge waves. Izvestiya, Atmospheric and Oceanic Physics, 42, 254–261.

    Article  Google Scholar 

  • Dubinina, V. A., Kurkin, A. A., & Polukhina, O. E. (2008). On the nonlinear interactions in triads of edge waves on the sea shelf. Physical Oceanography, 18, 117–132.

    Article  Google Scholar 

  • Fujima, K., Dozono, R., & Shigemura, T. (2000). Generation and propagation of tsunami accompanying edge waves on a uniform shelf. Coastal Engineering Journal, 42, 211–236.

    Article  Google Scholar 

  • Geist, E. L. (2009). Phenomenology of tsunamis: Statistical properties from generation to runup. Advances in Geophysics, 51, 107–169.

    Article  Google Scholar 

  • Geist, E. L. (2012). Near-field tsunami edge waves and complex earthquake rupture. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-00012-00491-00027.

    Google Scholar 

  • Geist, E. L. (2016). Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models. Geophysical Journal International, 204, 878–891. https://doi.org/10.1093/gji/ggv489.

    Article  Google Scholar 

  • Golovachev, E. V., Kochergin, I. E., & Pelinovsky, E. N. (1992). The effect of the Airy phase during propagation of edge waves. Soviet Journal of Physical Oceanography, 3, 1–7.

    Article  Google Scholar 

  • Greenspan, H. P. (1956). The generation of edge waves by moving pressure distributions. Journal of Fluid Mechanics, 1, 574–592.

    Article  Google Scholar 

  • Hasselmann, K. (1966). Feynamn diagrams and interaction rules of wave–wave scattering processes. Reviews of Geophysics, 4, 1–32.

    Article  Google Scholar 

  • Herrero, A., & Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America, 84, 1216–1228.

    Google Scholar 

  • Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ODE solvers. In R. S. Stepleman (Ed.), Scientific computing. Amsterdam: North-Holland.

    Google Scholar 

  • Hsieh, W. W., & Mysak, L. A. (1980). Resonant interactions between shelf waves, with applications to the Oregon Shelf. Journal of Physical Oceanography, 10, 1729–1741.

    Article  Google Scholar 

  • Ishii, H., & Abe, K. (1980). Propagation of tsunami on a linear slope between two flat regions. Part I edge wave. Journal of Physics of the Earth, 28, 531–541.

    Article  Google Scholar 

  • Kajiura, K. (1972). The directivity of energy radiation of the tsunami generated in the vicinity of a continental shelf. Journal of the Oceanographical Society of Japan, 28, 260–277.

    Article  Google Scholar 

  • Kartashova, E. (2011). Nonlinear resonance analysis: Theory, computation, applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kartashova, E., & L’vov, V. S. (2007). Model of intraseasonal oscillations in Earth’s atmosphere. Physical Review Letters, 98, 198501.

    Article  Google Scholar 

  • Kartashova, E., & L’vov, V. S. (2008). Cluster dynamics of planetary waves. EPL (Europhysics Letters), 83, 50012.

    Article  Google Scholar 

  • Kartashova, E., Raab, C., Feurer, C., Mayrhofer, G., & Schreiner, W. (2008). Symbolic computation for nonlinear wave resonances. In E. Pelinovsky & C. Kharif (Eds.), Extreme ocean waves (pp. 95–126). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Kaup, D. J., Reiman, A., & Bers, A. (1979). Space–time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium. Reviews of Modern Physics, 51, 275–309.

    Article  Google Scholar 

  • Kenyon, K. E. (1970). A note on conservative edge wave interactions. Deep-Sea Research, 17, 197–201.

    Google Scholar 

  • Kirby J. T., Putrevu U., & Özkan-Haller H. T. (1998). Evolution equations for edge waves and shear waves on longshore uniform beaches. In: Proceedings of 26th International Conference on Coastal Engineering. ASCE, Copenhagen, Denmark, pp. 203–216.

  • Kurkin, A., & Pelinovsky, E. (2002). Focusing of edge waves above a sloping beach. European Journal of Mechanics B/Fluids, 21, 561–577.

    Article  Google Scholar 

  • Lavallée, D., Liu, P., & Archuleta, R. J. (2006). Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophysical Journal International, 165, 622–640.

    Article  Google Scholar 

  • Lavallée, D., Miyake, H., & Koketsu, K. (2011). Stochastic model of a subduction-zone earthquake: Sources and ground motions for the 2003 Tokachi-oki, Japan, earthquake. Bulletin of the Seismological Society of America, 101, 1807–1821.

    Article  Google Scholar 

  • Leblond, P. H., & Mysak, L. A. (1978). Waves in the ocean. Amseterdam: Elsevier.

    Google Scholar 

  • Longuet-Higgins, M. S., & Gill, A. E. (1967). Resonant interactions between planetary waves. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 299, 120–144. https://doi.org/10.1098/rspa.1967.0126.

    Article  Google Scholar 

  • Lynch, P. (2003). Resonant Rossby wave triads and the swinging spring. Bulletin of the American Meteorological Society, 84, 605–616. https://doi.org/10.1175/bams-84-5-605.

    Article  Google Scholar 

  • Lynch, P. (2009). On resonant Rossby–Haurwitz triads. Tellus A, 61, 438–445. https://doi.org/10.1111/j.1600-0870.2009.00395.x.

    Article  Google Scholar 

  • Lynch, P., & Houghton, C. (2004). Pulsation and precession of the resonant swinging spring. Physica D: Nonlinear Phenomena, 190, 38–62. https://doi.org/10.1016/j.physd.2003.09.043.

    Article  Google Scholar 

  • Mai P. M., & Beroza G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research, 107. https://doi.org/10.1029/2001jb000588.

  • Mei, C. C., Stiassnie, M., & Yue, D. K.-P. (2005). Theory and applications of ocean surface waves. Part 2: Nonlinear aspects. Singpore: World Scientific.

    Google Scholar 

  • Miller, G. R., Munk, W. H., & Snodgrass, F. E. (1962). Long-period waves over California’s continental borderland Part II. Tsunamis. Journal of Marine Research, 20, 31–41.

    Google Scholar 

  • Monserrat, S., Vilibic, I., & Rabinovich, A. B. (2006). Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6, 1035–1051.

    Article  Google Scholar 

  • Munk, W., Snodgrass, F. E., & Carrier, G. F. (1956). Edge waves on the continental shelf. Science, 123, 127–132.

    Article  Google Scholar 

  • Munk, W., Snodgrass, F. E., & Gilbert, F. (1964). Long waves on the continental shelf: An experiment to separate trapped and leaky modes. Journal of Fluid Mechanics, 20, 529–554.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.

    Google Scholar 

  • Pelinovsky, E., Polukhina, O., & Kurkin, A. (2010). Rogue edge waves in the ocean. European Physical Journal Special Topics, 185, 34–44.

    Article  Google Scholar 

  • Rabinovich, A. B., Candella, R. N., & Thomson, R. E. (2011). Energy decay of the 2004 Sumatra tsunami in the World Ocean. Pure and Applied Geophysics, 168, 1919–1950.

    Article  Google Scholar 

  • Reznik, G. M., Piterbarg, L. I., & Kartashova, E. A. (1993). Nonlinear interactions of spherical Rossby modes. Dynamics of Atmospheres and Oceans, 18, 235–252. https://doi.org/10.1016/0377-0265(93)90011-U.

    Article  Google Scholar 

  • Saito, T., Inazu, D., Tanaka, S., & Miyoshi, T. (2013). Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake. Bulletin of the Seismological Society of America, 103, 1429–1443. https://doi.org/10.1785/0120120183.

    Article  Google Scholar 

  • Slunyaev, A., Didenkulova, I. I., & Pelinovsky, E. (2011). Rogue waters. Contemporary Physics, 52, 571–590.

    Article  Google Scholar 

  • Snodgrass, F. E., Munk, W. H., & Miller, G. R. (1962). Long-period waves over California’s continental borderland Part I. Background spectra. Journal of Marine Research, 20, 3–30.

    Google Scholar 

  • Sobarzo, M., Garcés-Vargas, J., Bravo, L., Tassara, A., & Quiñones, R. A. (2012). Observing sea level and current anomalies driven by a megathrust slope-shelf tsunami: The event on February 27, 2010 in central Chile. Continental Shelf Research, 49, 44–55. https://doi.org/10.1016/j.csr.2012.09.001.

    Article  Google Scholar 

  • Toledo, B. A., Chian, A. C. L., Rempel, E. L., Miranda, R. A., Muñoz, P. R., & Valdivia, J. A. (2013). Wavelet-based multifractal analysis of nonlinear time series: The earthquake-driven tsunami of 27 February 2010 in Chile. Physical Review E, 87, 022821.

    Article  Google Scholar 

  • Vela, J., Pérez, B., González, M., Otero, L., Olabarrieta, M., Canals, M., et al. (2014). Tsunami resonance in Palma Bay and Harbor, Majorca Island, as induced by the 2003 western Mediterranean earthquake. The Journal of Geology, 122, 165–182. https://doi.org/10.1086/675256.

    Article  Google Scholar 

  • Vennell, R. (2010). Resonance and trapping of topographic transient ocean waves generated by a moving atmospheric disturbance. Journal of Fluid Mechanics, 650, 427–443.

    Article  Google Scholar 

  • Wilhelmsson, H., Stenflo, L., & Engelmann, F. (1970). Explosive instabilities in the well-defined phase description. Journal of Mathematical Physics, 11, 1738–1742. https://doi.org/10.1063/1.1665320.

    Article  Google Scholar 

  • Yamazaki Y., & Cheung K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38. https://doi.org/10.1029/2011gl047508.

  • Yankovsky A. E. (2009). Large-scale edge waves generated by hurricane landfall. Journal of Geophysical Research, 114. https://doi.org/10.1029/2008jc005113.

Download references

Acknowledgements

The author very much appreciates the constructive comments received on the manuscript by Efim Pelinovsky, Kenny Ryan, and an anonymous reviewer, as well as the thoughtful insights of Editor Alexander Rabinovich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Geist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geist, E.L. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes. Pure Appl. Geophys. 175, 1341–1354 (2018). https://doi.org/10.1007/s00024-018-1796-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1796-y

Keywords

Navigation