Skip to main content
Log in

The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On September 29, 2009 at 17:48 UTC, an Mw = 8.1 earthquake in the Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga. One of the worst hits was the volcanic island of Tutuila in American Samoa. Tutuila has a typical tropical island bathymetry setting influenced by coral reefs, and so the event provided an opportunity to evaluate the relationship between tsunami dynamics and the bathymetry in that typical island environment. Previous work has come to differing conclusions regarding how coral reefs affect tsunami dynamics through their influence on bathymetry and dissipation. This study presents numerical simulations of this event with a focus on two main issues: first, how roughness variations affect tsunami run-up and whether different values of Manning’s roughness parameter, n, improve the simulated run-up compared to observations; and second, how depth variations in the shelf bathymetry with coral reefs control run-up and inundation on the island coastlines they shield. We find that no single value of n provides a uniformly good match to all observations; and we find substantial bay-to-bay variations in the impact of varying n. The results suggest that there are aspects of tsunami wave dissipation which are not captured by a simplified drag formulation used in shallow-water waves model. The study also suggests that the primary impact of removing the near-shore bathymetry in coral reef environment is to reduce run-up, from which we conclude that, at least in this setting, the impact of the near-shore bathymetry is to increase run-up and inundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baba, T., Mleczko, R., Burbidge, D., Cummins, P. R., & Thio, H. K. (2008). The effect of the Great Barrier reef on the propagation of the 2007 Solomon islands tsunami recorded in Northeastern Australia. Pure and Applied Geophysics, 165(11), 2003–2018.

    Article  Google Scholar 

  • Baptista, M. A., Miranda, P. M. A., Miranda, J. M., & Victor, L. M. (1998). Constrains on the source of the 1755 Lisbon tsunami inferred from numerical modelling of historical data. Journal of Geodynamics, 25, 159–174.

    Article  Google Scholar 

  • Borrero, J.C., Greer, S.D., Lebreton, L., & Fritz, H.M. (2011). Field surveys and numerical modelling of the 2009 South Pacific and 2010 Mentawai Islands tsunamis. In Proceedings of Coasts and Ports Conference, Perth, Australia, September 28–30, 2011.

  • Bricker, J. D., Gibson, S., Takagi, H., & Imamura, F. (2015). On the need for larger Manning’s roughness coefficients in depth-integrated tsunami inundation models. Coastal Engineering Journal. https://doi.org/10.1142/S0578563415500059.

    Google Scholar 

  • Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Dilmen, D. I., Titov, V. V., & Roe, H. G. (2015). Evaluation of the relationship between coral damage and tsunami dynamics; case study: 2009 Samoa tsunami. Pure and Applied Geophysics, 172(12), 3557–3572. https://doi.org/10.1007/s00024-015-1158-y.

    Article  Google Scholar 

  • Fernando, H. J. S., McCulley, J. L., Mendis, S. G., & Perera, K. (2005). Coral poaching worsens tsunami destruction in Sri Lanka. Eos Transactions American Geophysical Union, 86(33), 301–304. https://doi.org/10.1029/2005eo330002.

    Article  Google Scholar 

  • Fernando, H. J. S., Samarawickrama, S. P., Balasubramanian, S., Hettiarachchib, S. S. L., & Voropayeva, S. (2008). Effects of porous barriers such as coral reefs on coastal wave propagation. Journal of Hydro-environment Research, 1, 187–194.

    Article  Google Scholar 

  • Ford, M., Becker, J. M., Merrifield, M. A., & Song, Y. T. (2013). Marshall Islands fringing reef and atoll lagoon observations of the Tohoku tsunami. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-013-0757-8.

    Google Scholar 

  • Fritz, H. M., Borrero, J. C., Synolakis, C. E., Okal, E. A., Weiss, R., Titov, V., et al. (2011). Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations. Earth-Science Reviews, 107, 66–75.

    Article  Google Scholar 

  • Fujima, K. (2006). Effect of a submerged bay-mouth breakwater on tsunami behavior analyzed by 2D/3D hybrid model simulation. Natural Hazards, 39(2), 179–193.

    Article  Google Scholar 

  • Gelfenbaum, G., Apotsos, A., Stevens, A. W., & Jaffe, B. (2011). Effects of fringing reefs on tsunami inundation: American Samoa. Earth-Science Reviews, 107, 12–22.

    Article  Google Scholar 

  • Imamura, F., Goto, K., & Ohkubo, S. (2008). A numerical model for the transport of a boulder by tsunami. Journal of Geophysical Research. https://doi.org/10.1029/2007JC004170.

    Google Scholar 

  • Jaffe, B. E., Gelfenbaum, G., Buckley, M. L., Steve, W., Apotsos, A., Stevens, A. W., & Richmond, B. M. (2010). The limit of inundation of the September 29, 2009, Tsunami on Tutuila, American Samoa: U.S. Geological Survey Open File Report, 2010–1018.

  • Kraines, S. B., Yanagi, T., Isobe, M., & Komiyama, H. (1998). Wind-wave driven circulation on the coral reef at Bora Bay. Miyako Island, Coral Reefs, 17, 133–143.

    Article  Google Scholar 

  • Kunkel, M., Hallberg, R. W., & Oppenheimer, M. (2006). Coral reefs reduce tsunami impact in model simulations. Geophysical Research Letters. https://doi.org/10.1029/2006GL027892.

    Google Scholar 

  • Leschka, S., Kongko, W., & Larsen, O. (2009a). On the influence of nearshore bathymetry data quality on tsunami runup modeling, part I: Bathymetry. In Proc. of the 5th International Conference on Asian and Pacific Coasts (APAC 2009) (Vol. 1, pp. 151–156). Singapore: Soon Keat Tan, Zenhua Huang.

  • Levin, B. W., & Nosov, M. A. (2016). Propagation of a tsunami in the ocean and its interaction with the coast. In Levin, B. W., & Nosov M. A. (Ed.), Physics of tsunamis (pp. 311–358). Springer. https://doi.org/10.1007/978-3-319-24037-4.

  • Liu, P. L.-F., Wang, X., & Salisbury, A. J. (2009). Tsunami hazard and early warning system in South China Sea. Journal of Asian Earth Sciences, 36(1), 2–12.

    Article  Google Scholar 

  • Lynett, P. J. (2007). Effect of a shallow water obstruction on long wave runup and overland flow velocity. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 455–462. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(455).

    Article  Google Scholar 

  • Lynett, P. J. (2016). Precise prediction of coastal and overland flow dynamics: a grand challenge or a fool’s errand. Journal of Disaster Research. https://doi.org/10.20965/jdr.2016.p0615.

    Google Scholar 

  • NTHMP, National Tsunami Hazard Mitigation Program. (2012). Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/NOAA/NTHMP, (NOAA Special Report), 436.

  • Nunes, V., & Pawlak, G. (2008). Observations of bed roughness of a coral reef. Journal of Coastal Research, 24(2B), 39–50.

    Article  Google Scholar 

  • Okal, E. A., Fritz, H. M., Synolakis, C. E., Borrero, J. C., Weiss, R., Lynett, P. J., et al. (2010). Field survey of the Samoa tsunami of 29 September 2009. Seismological Research Letters, 81(4), 577–591. https://doi.org/10.1785/gssrl.81.4.577.

    Article  Google Scholar 

  • Roeber, V., Yamazaki, Y., & Cheung, K. F. (2010). Resonance and impact of the 2009 Samoa tsunami around Tutuila, American Samoa. Geophysical Research Letters. https://doi.org/10.1029/2010GL044419.

    Google Scholar 

  • Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., González, F. I. (2008). Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165 (11–12), 2197–2228.

    Article  Google Scholar 

  • Tang, L., Titov, V. V., & Chamberlin, C. D. (2009). Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. Journal of Geophysical Research, 114, C12025. https://doi.org/10.1029/2009jc00547.

    Article  Google Scholar 

  • Titov, V. V. (1997). Numerical modeling of long wave runup, PhD Thesis, University of Southern California, p. 141.

  • Titov, V. V. (2009). Tsunami forecasting. In A. N. Bernard & A. R. Robinson (Eds.), The Sea. Tsunamis, Chap. 12 (Vol. 15, pp. 371–400). Cambridge, MA: Harvard University Press.

  • Titov, V., & González, F. I. (1997). Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, p. 11.

  • Titov, V. V., Gonzales, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., et al. (2003a). Real-time tsunami forecasting: Challenges and solutions. Natural Hazards, 35(1), 35–41.

    Article  Google Scholar 

  • Titov, V.V., Gonzalez, F. I., Mofjeld, H. O., & Venturato, A. J. (2003b). NOAA TIME Seattle tsunami mapping project: Procedures, data sources, and products. NOAA Tech. Memo. OAR PMEL-124, NTIS: PB2004-101635, p. 21.

  • Titov, V. V., Kânoğlu, U., & Synolakis, C. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(6), 03116004. https://doi.org/10.1061/(asce)ww.1943-5460.0000357.

    Article  Google Scholar 

  • Wei, Y., Chamberlin, C., Titov, V., Tang, L., & Bernard, E. N. (2013). Modeling of the 2011 Japan tsunami—Lessons for near-field forecast. Pure and Applied Geophysics, 170(6–8), 1309–1331. https://doi.org/10.1007/s00024-012-0519-z.

    Article  Google Scholar 

Download references

Acknowledgements

This publication makes use of data products provided by National Oceanic and Atmospheric Administration (NOAA), Pacific Marine Environmental Laboratory (Contribution number 4618). This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2018-0131. Hermann Fritz generously provided the post-tsunami run-up survey datasets. We are grateful to Randall Leveque, Joanne Bourgeois, Frank Gonzales, Hongqiang Zhou, Christopher Moore, Marie Eble, Diego Arcas, Lijuan Tang, Jose Borrero and the anonymous reviewer for their endless advice and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily V. Titov.

Appendix

Appendix

These tables present MOST model output for maximum amplitude along selected villages (Fig. 1 for locations of the villages). There is a tendency that run-up increases with decreasing Manning coefficient and the model better estimates run-up (Table 2). There is also a tendency that run-up decreases with removing reefs (Table 3).

Table 2 Model, simulated run-up (m) for different Manning’s roughness, n, values at 31 villages around Tutuila
Table 3 Model, simulated run-up for different r values representing varying bathymetry at 31 villages around Tutuila

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilmen, D.I., Roe, G.H., Wei, Y. et al. The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island. Pure Appl. Geophys. 175, 1239–1256 (2018). https://doi.org/10.1007/s00024-018-1769-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1769-1

Keywords

Navigation