Skip to main content
Log in

Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China

  • Regular Issue
  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen, C. R., Luo, Z. L., Qian, H., Wen, X. Z., Zhou, H. W., & Huang, W. S. (1991). Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geological Society of America Bulletin, 103(9), 1178–1199.

    Article  Google Scholar 

  • Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief Model: procedures, data sources and analysis. Psychologist, 16, 20–25.

    Google Scholar 

  • Balmino, G., Vales, N., Bonvalot, S., & Briais, A. (2012). Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy, 86, 499–520.

    Article  Google Scholar 

  • Bansal, A. R., & Dimri, V. P. (2001). Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure and Applied Geophysics, 58(4), 799–812.

    Article  Google Scholar 

  • Barbosa, V. C. F., & Silva, J. B. C. (1994). Generalized compact gravity inversion. Geophysics, 7(59), 57–68.

    Article  Google Scholar 

  • Battaglia, M., & Segall, P. (2004). The interpretation of gravity changes and crustal deformation in active volcanic areas. Pure and Applied Geophysics, 161(7), 1453–1467.

    Article  Google Scholar 

  • Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371.

    Article  Google Scholar 

  • Berrino, G., & Camacho, A. G. (2008). 3D gravity inversion by growing bodies and shaping layers at Mt. Vesuvius (Southern Italy). Pure and Applied Geophysics, 165(6), 1095–1115.

    Article  Google Scholar 

  • Burchfiel, B. C., Chen, Z. L., Liu, Y., & Royden, L. H. (1995). Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8), 661–735.

    Article  Google Scholar 

  • Camacho, A. G., Vieira, R., & Montesinos, F. G. (2000). Gravity inversion by means of growing bodies. Geophysics, 318(65), 655–664.

    Google Scholar 

  • Casenave, F., Métivier, L., Pajot-Métivier, G., & Panet, I. (2016). Fast computation of general forward gravitation problems. Journal of Geodesy, 90(7), 655–675.

    Article  Google Scholar 

  • Chakavarthi, V., & Sundararajan, N. (2006). Gravity anomalies of 2.5-D multiple prismatic structures with variable density: A Marquardt inversion. Pure and Applied Geophysics, 163(1), 229–242.

    Article  Google Scholar 

  • Chen, Y. D. (2003). Inversion if gravity anomaly with continuous complex potential wavelet transform. Geophysical & Geochemical Exploration, 27(5), 354–361.

    Google Scholar 

  • Chen, Z. X., Meng, X. H., Guo, L. H., & Liu, G. F. (2012). GICUDA: a parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA. Computers & Geosciences, 46(3), 119–128.

    Google Scholar 

  • Commer, M. (2011). Three-dimensional gravity modelling and focusing inversion using rectangular meshes. Geophysical Prospecting, 59(5), 966–979.

    Google Scholar 

  • Čuma, M., Wilson, G. A., & Zhdanov, M. S. (2012). Large-scale 3D inversion of potential field data. Geophysical Prospecting, 60(6), 1186–1199.

    Article  Google Scholar 

  • Dave, A. M., & Matthew, G. K. (2011). Optimal, scalable forward models for computing gravity anomalies. Geophysical Journal International, 187, 161–177.

    Article  Google Scholar 

  • Dette, H. (1995). A note on some peculiar nonlinear extremal phenomena of the Chebyshev polynomials. Proceedings of the Edinburgh Mathematical Society, 38(2), 343–355.

    Article  Google Scholar 

  • Epperson, J. F. (1987). On the Runge example. American Mathematical Monthly, 94(4), 329–341.

    Article  Google Scholar 

  • Foks, N. L., Krahenbuhl, R., & Li, Y. G. (2014). Adaptive sampling of potential-field data: A direct approach to compressive inversion. Geophysics, 79(1), IM1–IM9.

    Article  Google Scholar 

  • Fong, W., & Darve, E. (2009). The black-box fast multipole method. Journal of Computational Physics, 228(23), 8712–8725.

    Article  Google Scholar 

  • Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal of Computational Physics, 73(2), 325–348.

    Article  Google Scholar 

  • Guo, L. H., Meng, X. H., Shi, L., & Chen, Z. X. (2012). Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent. Chinese Journal of Geophysics, 55, 4078–4088.

    Google Scholar 

  • Hou, Z. L., Wei, X. H., & Huang, D. N. (2016). Fast density inversion solution for full tensor gravity gradiometry data. Pure and Applied Geophysics, 173(2), 509–523.

    Article  Google Scholar 

  • Last, B. J., & Kubik, K. (1983). Compact gravity inversion. Geophysics, 48, 713–721.

    Article  Google Scholar 

  • Li, X., & Chouteau, M. (1998). Three-dimensional gravity modelling in all space. Surveys In Geophysics, 19(4), 339–368.

    Article  Google Scholar 

  • Li, Y. G., & Oldenburg, D. W. (2003). Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International, 152(2), 251–265.

    Article  Google Scholar 

  • Liu, Y., Lü, Q. T., Li, X. B., Qi, G., Zhao, J. H., Yan, J. Y., et al. (2015). 3D gravity inversion based on Bayesian method with model order reduction. Chinese Journal of Geophysics, 58, 4727–4739.

    Google Scholar 

  • Marson, J. C. (1996). Chebyshev polynomials: Theory and applications. Boca Raton: Chapman and Hall.

    Google Scholar 

  • Martin, R., Monteiller, V., Komatitsch, D., Perrouty, S., Jessell, M., Bonvalot, S., et al. (2013). Gravity inversion using wavelet-based compression on parallel hybrid CPU/GPU systems: application to southwest Ghana. Geophysical Journal International, 195(3), 1594–1619.

    Article  Google Scholar 

  • Meju, M. A. (1994). Biased estimation: a simple framework for inversion and uncertainty analysis with prior information. Geophysical Journal International, 119(2), 521–528.

    Article  Google Scholar 

  • Meju, M. A. (2009). Regularized extremal bounds analysis (REBA): an approach to quantifying uncertainty in nonlinear geophysical inverse problems. Geophysical Research Letters, 36(36), 151–157.

    Google Scholar 

  • Meng, Z. H., Li, F. T., Xu, X. C., Huang, D. N., Zhang, D. L. (2016). Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm. Exploration Geophysics, EG15041. doi:10.1071/EG15041.

  • Mirzaei, M., Bredewout, J. W., & Snieder, R. K. (1996). Gravity data inversion using the subspace method. Springer, Netherlands, 23, 187–198.

    Google Scholar 

  • Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., Lafehr, T. R., Li, Y., et al. (2005). Historical development of the gravity method in exploration. Geophysics, 70(6), 63–89.

    Article  Google Scholar 

  • Oldenburg, D. W., McGillivray, P. R., & Ellis, R. G. (1993). Generalized subspace methods for large-scale inverse problems. Geophysical Journal International, 114(1), 12–20.

    Article  Google Scholar 

  • Parker, R. L. (1973). The rapid calculation of potential anomalies. Geophysical Journal International, 31(4), 447–455.

    Article  Google Scholar 

  • Pilkington, M. (1997). 3-D magnetic imaging using conjugate gradients. Geophysics, 62(4), 1132–1142.

    Article  Google Scholar 

  • Pilkington, M. (2009). 3D magnetic data-space inversion with sparseness constraints. Geophysics, 74(1), L7–L15.

    Article  Google Scholar 

  • Pilkington, M. (2012). Analysis of gravity gradiometer inverse problems using optimal design measures. Geophysics, 77(2), G25–G31.

    Article  Google Scholar 

  • Portniaguine, O., & Zhdanov, M. S. (2002). 3-D magnetic inversion with data compression and image focusing. Geophysics, 67(5), 1532–1541.

    Article  Google Scholar 

  • Qin, P. B., Huang, D. N., Yuan, Y., Geng, M. X., & Liu, J. (2016). Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient. Journal of Applied Geophysics, 126, 52–73.

    Article  Google Scholar 

  • Rezaie, M., Moradzadeh, A., Kalate, A. N., & Aghajani, H. (2017). Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method. Pure ad Applied Geophysics, 174(1), 359–374.

    Article  Google Scholar 

  • Scraton, R. E. (1969). The solution of integral equations in Chebyshev series. Mathematics of Computation, 23(108), 837–844.

    Article  Google Scholar 

  • Shin, Y. H., Choi, K. S., & Xu, H. Z. (2006). Three-dimensional forward and inverse models for gravity fields based on the Fast Fourier Transform. Computers & Geosciences, 32(6), 727–738.

    Article  Google Scholar 

  • Tarantola, A. (1987). Inverse problem theory. New York: Elsevier.

  • Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. Washington, DC: Winston.

    Google Scholar 

  • Tontini, F. C., Cocchi, L., & Carmisciano, C. (2009). Rapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy). Journal of Geophysical Research: Solid Earth, 114(B2), 1205–1222.

    Article  Google Scholar 

  • Toushmalani, R., & Saibi, H. (2015). Fast 3D inversion of gravity data using Lanczos bidiagonalization method. Arabian Journal of Geosciences, 8(7), 4969–4981.

    Article  Google Scholar 

  • Vogel, C. R. (2002). Computational methods for inverse problems. Philadelphia: Society of Industrial and Applied Mathematics (SIAM).

  • Wang, M. M., Hubbard, J., Plesch, A., Shaw, J. H., & Wang, L. N. (2016). Three-dimensional seismic velocity structure in the Sichuan basin, China. Journal of Geophysical Research: Solid Earth, 121, 1007–1022.

    Google Scholar 

  • Wang, J., Meng, X. H., Guo, L. H., Chen, Z. X., & Li, F. (2014). Correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising. Journal of Geophysics and Engineering, 11, 055007.

    Article  Google Scholar 

  • Wang, J., Meng, X. H., & Li, F. (2015a). Improved curvature gravity gradient tensor with principal component analysis and its application in edge detection of gravity data. Journal of Applied Geophysics, 118, 106–114.

    Article  Google Scholar 

  • Wang, J., Meng, X. H., & Li, F. (2015b). A computationally efficient scheme for the inversion of large scale potential field data: Application to synthetic and real data. Computers & Geosciences, 85, 102–111.

    Article  Google Scholar 

  • Wang, J., Meng, X. H., & Li, F. (2017). New improvements for lineaments study of gravity data with improved Euler inversion and phase congruency of the field data. Journal of Applied Geophysics, 136, 326–334.

    Article  Google Scholar 

  • Wen, X. Z., Ma, S. L., Xu, X. W., & He, Y. N. (2008). Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors, 168, 16–36.

    Article  Google Scholar 

  • Wolf, D., Santoyo, M. A., & Fernández, J. (2012). Deformation and gravity change: Indicators of isostasy, tectonics, volcanism and climate change, volume III. Introduction. Pure and Applied Geophysics, 169(8), 1329–1330.

    Article  Google Scholar 

  • Xiong, X. S., Gao, R., Zhang, J. S., Wang, H. Y., & Guo, L. H. (2015). Differences of structure in mid-lower crust between the Eastern and Western blocks of the Sichuan basin. Chinese Journal of Geophysics, 58(7), 2413–2423.

    Google Scholar 

  • Yao, C. L., Zheng, Y. M., & Zhang, Y. W. (2007). 3-D gravity and magnetic inversion for physical properties using stochastic subspaces. Chinese Journal of Geophysics, 50(5), 1576–1583.

    Google Scholar 

  • Zhang, S., Meng, X. H., Chen, Z. X., & Zhou, J. J. (2015). Rapid calculation of gravity anomalies based on residual node densities and its GPU implementation. Computers & Geosciences, 83, 139–145.

    Article  Google Scholar 

  • Zhang, S. J., Sandwell, D. T., Jin, T. Y., & Li, D. W. (2017). Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. Journal of Applied Geophysics, 137, 128–137.

    Article  Google Scholar 

  • Zhou, W. N. (2016). Depth estimation method based on the ratio of gravity and full tensor gradient invariant. Pure and Applied Geophysics, 173(2), 499–508.

    Article  Google Scholar 

  • Zhou, J. J., Meng, X. H., Guo, L. H., & Zhang, S. (2015). Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization. Journal of Applied Geophysics, 119, 51–60.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and anonymous reviewers for their constructive comments for improving the paper. We also acknowledge International Gravimetric Bureau (BGI) for providing the WGM2012 global earth model. This work was financially supported by 1) The National Natural Science Foundation of China (Grant Numbers: 41474106 and 41530321) and 2) The National 863 Project of China (Grant Number: 2014AA06A613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Meng, X. & Li, F. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China. Pure Appl. Geophys. 174, 4101–4117 (2017). https://doi.org/10.1007/s00024-017-1635-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1635-6

Keywords

Navigation