Skip to main content
Log in

Experimental Study of Thermal Field Evolution in the Short-Impending Stage Before Earthquakes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Phenomena at critical points are vital for identifying the short-impending stage prior to earthquakes. The peak stress is a critical point when stress is converted from predominantly accumulation to predominantly release. We call the duration between the peak stress and instability “the meta-instability stage”, which refers to the short-impending stage of earthquakes. The meta-instability stage consists of a steady releasing quasi-static stage and an accelerated releasing quasi-dynamic stage. The turning point of the above two stages is the remaining critical point. To identify the two critical points in the field, it is necessary to study the characteristic phenomena of various physical fields in the meta-instability stage in the laboratory, and the strain and displacement variations were studied. Considering that stress and relative displacement can be detected by thermal variations and peculiarities in the full-field observations, we employed a cooled thermal infrared imaging system to record thermal variations in the meta-instability stage of stick slip events generated along a simulated, precut planer strike slip fault in a granodiorite block on a horizontally bilateral servo-controlled press machine. The experimental results demonstrate the following: (1) a large area of decreasing temperatures in wall rocks and increasing temperatures in sporadic sections of the fault indicate entrance into the meta-instability stage. (2) The rapid expansion of regions of increasing temperatures on the fault and the enhancement of temperature increase amplitude correspond to the turning point from the quasi-static stage to the quasi-dynamic stage. Our results reveal thermal indicators for the critical points prior to earthquakes that provide clues for identifying the short-impending stage of earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen, M. H., Deng, Z. H., & Jia, Q. H. (2003). The relationship between the satellite infrared anomalies before earthquake and the seismogenic fault—a case study on the 2001 Kunlun earthquake. Seismology and Geology, 25(1), 100–108. doi:10.3969/j.issn.0253-4967.2003.01.010. (in Chinese with English abstract).

    Google Scholar 

  • Chen, S. Y., Liu, P. X., Guo, Y. S., Liu, L. Q., & Ma, J. (2015). An experiment on temperature variations in sandstone during biaxial loading. Physics & Chemistry of the Earth Parts A/b/c, s, 85–86, 3–8. doi:10.1016/j.pce.2014.10.006.

    Article  Google Scholar 

  • Chen, S. Y., Liu, L. Q., Liu, P. X., & Ma, J. (2009). Theoretical and experimental study on relationship between stress-strain and temperature variation. Science China Earth Sciences, 52(11), 1825–1834.

    Article  Google Scholar 

  • Chen, S. Y., Liu, P. X., Liu, L. Q., & Ma, J. (2013). A phenomenon of ground temperature change prior to Lushan earthquake observed in Kangding. Seismology and Geology, 35(3), 634–640. doi:10.3969/j.issn.0253-4967.2013.03.017. (in Chinese with English abstract).

    Google Scholar 

  • Chi, S. L., Liu, Q., Chi, Y., Deng, T., Liao, C. W., Yang, G., et al. (2013). Borehole strain anomalies before the 20 April 2013 Lushan M s 7.0 earthquake. Acta Seismologia Sinica, 35(3), 296–303. doi:10.3969/j.issn.0253-3782.2013.03.002. (in Chinese with English abstract).

    Google Scholar 

  • Cyranoski, D. (2004). Earthquake prediction: a seismic shift in thinking. Nature, 431(7012), 1032–1034.

    Article  Google Scholar 

  • Das, S., & Scholz, C. (1981). Theory of time dependent rupture in the earth. Journal of Geophysical Research: Solid Earth (1978–2012), 86(B7), 6039–6051.

    Article  Google Scholar 

  • Dieterich, J.H. (1986). A model for the nucleation of earthquake slip. Earthquake source mechanics, 37–47.

  • Dieterich, J. H. (1992). Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 211(1–4), 115–134.

    Article  Google Scholar 

  • Ellsworth, W., & Beroza, G. (1995). Seismic evidence for an earthquake nucleation phase. Science, 268(5212), 851–855. doi:10.1126/science.268.5212.851.

    Article  Google Scholar 

  • Fang, Z., Dieterich, J. H., & Xu, G. (2010). Effect of initial conditions and loading path on earthquake nucleation. Journal of Geophysical Research Atmospheres, 115(B6), 449–463. doi:10.1029/2009JB006558.

    Article  Google Scholar 

  • Geller, R. J., Jackson, D. D., Kagan, Y. Y., & Mulargia, F. (1997). Enhanced: earthquakes cannot be predicted. Science, 275(5306), 1616–1620.

    Article  Google Scholar 

  • Hasegawa, A., & Yoshida, K. (2015). Preceding seismic activity and slow slip events in the source area of the 2011 M w 9.0 Tohoku-Oki earthquake: a review. Geoscience Letters, 2(1), 1–13. doi:10.1186/s40562-015-0025-0.

    Article  Google Scholar 

  • Ida, S. (2010). Striations, duration, migration and tidal response in deep tremor. Nature, 466, 356–359. doi:10.1038/nature09251.

    Article  Google Scholar 

  • Jordan, T. H., Chen, Y. T., Gasparini, P., & Madariaga, R. (2011). Operational earthquake forecasting—State of knowledge and guidelines for utilization. Translated World Seismology, 54(4), 315–391. doi:10.4401/ag-5350.

    Google Scholar 

  • Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., et al. (2006). Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi. Taiwan earthquake. Geophysical Research Letters, 33, L14306. doi:10.1029/2006GL026733.

    Article  Google Scholar 

  • Kato, N., & Hirasawa, T. (1996). Effects of strain rate and strength nonuniformity on the slip nucleation process: a numerical experiment. Tectonophysics, 265(3), 299–311.

    Article  Google Scholar 

  • Kato, N., Yamamoto, K., Yamamoto, H., & Hirasawa, T. (1992). Strain-rate effect on frictional strength and the slip nucleation process. Tectonophysics, 211(1–4), 269–282.

    Article  Google Scholar 

  • Liu, L. Q., Chen, G. Q., Liu, P. X., et al. (2004a). Infrared measurement system for rock deformation experiment. Seismology and Geology, 26(3), 492–501. doi:10.3969/j.issn.0253-4967.2004.03.013. (in Chinese with English abstract).

    Google Scholar 

  • Liu, P. X., Liu, L. Q., Chen, S. Y., et al. (2004b). An experiment on the infrared radiation of surficial rocks during deformation. Seismology and Geology, 26(3), 502–511. doi:10.3969/j.issn.0253-4967.2004.03.014. (in Chinese with English abstract).

    Google Scholar 

  • Ma, J., Guo, Y., & Sherman, S. I. (2014). Accelerated synergism along a fault: a possible indicator for an impending major earthquake. Geodynamics Tectonophys, 5(2), 387–399. doi:10.5800/GT2014520134.

    Article  Google Scholar 

  • Ma, J., Liu, L. Q., Liu, P. X., & Ma, S. L. (2007). Thermal precursory pattern of fault unstable slip: an experimental study of en echelon faults. Chinese Journal of Geophysics, 50(4), 1141–1149.

    Article  Google Scholar 

  • Ma, S. L., Liu, L. Q., Ma, J., Wang, K. Y., Hu, X. Y., Liu, T. C., et al. (2003). Experimental study on nucleation process of stick-slip instability on homogeneous and non-homogeneous faults. Science China Earth Sciences, 46(2), 56–66.

    Google Scholar 

  • Ma, J., Ma, S. P., Liu, L. Q., & Liu, P. X. (2010). Experimental study of thermal and strain fields during de-formation of en enchelon faults and its geological implications. Geodynamics & Tectonophysics, 1(1), 24–35.

    Article  Google Scholar 

  • Ma, J., Sherman, S. I., & Guo, Y. S. (2012). Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a 5° bending fault. Science China Earth Sciences, 55(6), 869–881. doi:10.1007/s11430-012-4423-2.

    Article  Google Scholar 

  • McLaskey, G. C., & Lockner, D. A. (2014). Preslip and cascade processes initiating laboratory stick slip. Journal of Geophysical Research: Solid Earth, 119(8), 6323–6336. doi:10.1002/2014JB011220.

    Google Scholar 

  • Mei, S. R. (1986). The precursory complexity and regularity of the tangshan earthquake. Earth, Planets and Space, 34(Supplement), S193–S212.

    Google Scholar 

  • Melgar, D., Fan, W. Y., Riquelme, S., Geng, J. H., Liang, C. R., Fuentes, M., et al. (2016). Slip segmentation and slow rupture to the trench during the 2015, M w 8.3 Illapel, Chile earthquake. Geophysical Research Letters, 43, 961–966. doi:10.1002/2015GL067369.

    Article  Google Scholar 

  • Ohnaka, M., Kuwahara, Y., & Yamamoto, K. (1987). Constitutive relations between dynamic physical parameters near a tip of the propagating slip zone during stick-slip shear failure. Tectonophysics, 144(1), 109–125.

    Article  Google Scholar 

  • Okubo, P. G., & Dieterich, J. H. (1984). Effects of physical fault properties on frictional instabilities produced on simulated faults. Journal of Geophysical Research:solid Earth, 89(B7), 5817–5827. doi:10.1029/JB089iB07p05817.

    Article  Google Scholar 

  • Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science, 300(5627), 1942–1943. doi:10.1126/science.1084783.

    Article  Google Scholar 

  • Thompson, B. D., Young, R. P., & Lockner, D. A. (2009). Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite. Journal of Geophysical Research Atmospheres, 114(2), 1205–1222. doi:10.1029/2008JB005753.

    Google Scholar 

  • Wu, L. X., Liu, S. J., Wu, Y. H., & Wang, C. Y. (2006). Precursors for rock fracturing and failure—Part I: IRR image abnormalities. International Journal of Rock Mechanics and Mining Sciences, 43(3), 483–493. doi:10.1016/j.ijrmms.2005.09.002.

    Article  Google Scholar 

  • Wu, K. T., Yue, M. S., & Wu, H. Y. (1976). Certain characteristics of Haicheng earthquake (M = 7.3) sequence. Chinese Journal of Sinica, 63(8), 265–267.

    Google Scholar 

  • Yasuo, Y., Masao, N., Makoto, N., Joachim, P., Christoph, J., Takayoshi, W., et al. (2015). Nucleation process of an M2 earthquake in a deep gold mine in South Africa inferred from on-fault foreshock activity. Journal of Geophysical Research Solid Earth, 120, 5574–5594. doi:10.1002/2014JB011680.

    Article  Google Scholar 

  • Yin, X. C., Chen, X. Z., Song, Z. P., & Yin, C. (1995). A new approach to earthquake prediction: the load/unload response ratio (LURR) theory. Pure and Applied Geophysics, 145(3), 701–715.

    Article  Google Scholar 

  • Yin, X. C., Wang, Y. C., Peng, K. Y., Bai, Y. L., Wang, H. T., & Yin, X. F. (2000). Development of a new approach to earthquake prediction: load/unload response ratio (LURR) Theory. Pure and Applied Geophysics, 157, 2365–2383.

    Article  Google Scholar 

  • Yin, X. C., Zhang, L. P., Zhang, Y., & Peng, K. (2008). The newest developments of load-unload response ratio (LURR). Pure and Applied Geophysics, 165(3), 711–722. doi:10.1007/s00024-008-0314-z.

    Article  Google Scholar 

  • Zhang, G. M., & Fu, Z. X. (1990). Discussions on complexity of earthquake precursors from a point of rock instability. Journal of Seismological Research, 13(3), 215–222. (in Chinese with English abstract).

    Google Scholar 

  • Zhuo, Y. Q., Guo, Y. S., Yuntao, J. I., & Jin, M. A. (2013). Slip synergism of planar strike-slip fault during meta-instable state: experimental research based on digital image correlation analysis. Science China Earth Sciences, 56(11), 1881–1887.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Yanqun Zhuo and Yuntao Ji for their help in performing the experiments. The comments by the anonymous reviewers helped to improve the manuscript. This research is supported by the National Natural Science Foundation of China (Grant No. 41172180,41572181) and Basic Research Funds from the Institute of Geophysics, China Earthquake Administration (Grant No. DQJB15B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Ma, J., Liu, P. et al. Experimental Study of Thermal Field Evolution in the Short-Impending Stage Before Earthquakes. Pure Appl. Geophys. 175, 2527–2539 (2018). https://doi.org/10.1007/s00024-017-1626-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1626-7

Keywords

Navigation