Skip to main content
Log in

Gravity Survey at the Ceboruco Volcano Area (Nayarit, Mexico): a 3-D Model of the Subsurface Structure

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Ceboruco volcano (−104°30′, 21°7′, 2150 m asl) is located in the western portion of the trans-Mexican volcanic belt and NW extreme of the Tepic-Zacoalco rift zone, a structure composed of a series of NNW-trending en echelon fault-bounded basins constituting the NE boundary between the north-American plate and the Jalisco block (JB). Ceboruco experimented a Plinian eruption about 1000 years ago and several more of different styles afterward; the last one in 1870 CE. This volcano poses a significant risk because of the relatively large population in its surroundings. Ceboruco has been studied by mostly from the point of view of petrology, geochemistry, and physical volcanology; however, no geophysical studies about its internal structure have been published. In this paper, we present the results of a gravimetric survey carried out in its surroundings and a model of the internal structure obtained from inversion of the data. The Ceboruco area is characterized by a negative Bouguer anomaly spanning the volcanic structure. The probable causative body modeled with the data of the survey is located about 1 km below mean sea level and has a volume of 163 km3. We propose that this body is the magma chamber from where the products of its eruptions in the last 1000 years ensued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allan, J. F. (1986). Geology of the northern Colima and Zacoalco grabens, southwest Mexico: late Cenozoic rifting in the Mexican Volcanic Belt. Geological Society of America Bulletin, 97, 473–485.

    Article  Google Scholar 

  • Bower, S. M., & Woods, A. W. (1997). Control of magma volatile content and magma depth on the mass erupted during explosive volcanic eruptions. Journal of Geophysical Research, 102(B5), 10273–10290.

    Article  Google Scholar 

  • Browne, B. L., & Gardner, J. E. (2004). The nature and timing of caldera collapse as indicated by accidental lithic fragments from the AD ∼ 1000 eruption of Volcán Ceboruco, Mexico. Journal of Volcanology and Geothermal Research, 130(1), 93–105.

    Article  Google Scholar 

  • Ferrari, L. (1995). Miocene shearing along the northern boundary of the Jalisco block and the opening of the southern Gulf of California. Geology, 23(8), 751–754.

    Article  Google Scholar 

  • Ferrari, L., Conticelli, S., Vaggelli, G., Petrone, C. M., & Manetti, P. (2000). Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics, 318(1), 161–185.

    Article  Google Scholar 

  • Ferrari, L., López-Martínez, M., & Rosas-Elguera, J. (2002). Ignimbrite flare-up and deformation in the southern Sierra Madre Occidental, western Mexico: implications for the late subduction history of the Farallon plate. Tectonics, 21(4), 1–24.

    Article  Google Scholar 

  • Ferrari, L., Petrone, C. M., Francalanci, L., Tagami, T., Eguchi, M., Conticelli, S., et al. (2003). Geology of the San Pedro-Ceboruco graben, western Trans-Mexican volcanic belt. Revista Mexicana de Ciencias Geológicas, 20(3), 165–181.

    Google Scholar 

  • Ferrari, L., & Rosas-Elguera, J. (2000). Late Miocene to quaternary extension at the northern boundary of the Jalisco block, western Mexico: the Tepic-Zacoalco rift revisited. In H. Delgado-Granados, G. Aguirre-Díaz, & J. M. Stock (Eds.), Cenozoic tectonics and volcanism of Mexico: Geological Society of America Special Paper 334 (pp. 41–63). Bolder: Geological Society of America.

    Chapter  Google Scholar 

  • Frey, H. M., Lange, R. A., Hall, C. M., & Delgado-Granados, H. (2004). Magma eruption rates constrained by 40Ar/39Ar chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico. Geological Society of America Bulletin, 116(3–4), 259–276.

    Article  Google Scholar 

  • García-Serrano, A., Cifuentes-Nava, G., & Martínez-Casas, Z. (2015). Traslado Base Gravimétrica, GPS y Valores Geomagnéticos (Reporte Técnico) (p. 16). Mexico: Universidad Nacional Autónoma de México, Departamento de Ingeniería Geofísica.

    Google Scholar 

  • Gardner, J. E., & Tait, S. (2000). The caldera-forming eruption of Volcán Ceboruco, Mexico. Bulletin of Volcanology, 62(1), 20–33.

    Article  Google Scholar 

  • Gettings, P. (2009). High precision gravity measurements techniques, software, and algorithms.. Salt Lake: Department of Geology & Geophysics University of Utah.

    Google Scholar 

  • Gudmundsson, A. (2012). Magma chambers: formation, local stresses, excess pressures, and compartments. Journal of Volcanology and Geothermal Research, 237, 19–41.

    Article  Google Scholar 

  • Hammer, S. (1939). Terrain corrections for gravimeter stations. Geophysics, 4(3), 184–194.

    Article  Google Scholar 

  • INEGI (2011). Serie de Cartas Gravimétricas de México 2010: Carta Anomalía de Bouguer Completa. http://www.inegi.org.mx/geo/contenidos/geodesia/modelos_cartas.aspx. Accessed 2 Dec 2015.

  • INEGI (2013). Continuo de Elevaciones Mexicano 3.0 (CEM 3.0). http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/descarga.aspx. Accessed 03 Nov 2015.

  • Marquardt, D. W. (1963). An algorithm for least squares optimization of nonlinear parameters. Journal Society Indian Applied Mathematics, 11(2), 431–441.

    Article  Google Scholar 

  • Miranda, S. A., Herrada, A., & Pacino, M. C. (2013). Respuesta instrumental del gravímetro scintrex autograv cg-5 (s/n 40484) en modos continuo y relevamiento. Geoacta, 38(1), 1–14.

    Google Scholar 

  • Moritz, H. (2000). Geodetic reference system 1980. Journal of Geodesy, 74(1), 128–133.

  • Nelson, S. A. (1986). Geología del Volcán Ceboruco, Nayarit, con una estimación de riesgos de erupciones futuras. Revista mexicana de ciencias geológicas, 6(2), 243–258.

    Google Scholar 

  • Nettleton, L. L. (1976). Gravity and magnetics in oil prospecting. New York: McGraw-Hill Companies.

    Google Scholar 

  • Núñez Cornú, F. J. (2011). Peligro Sísmico en el Bloque de Jalisco, México. Física de la Tierra, 23, 199–229.

    Google Scholar 

  • Rao, B. R., & Murthy, I. R. (1978). Gravity and magnetic methods of prospecting. Lawrence Verry Incorporated.

  • Rao, P. R., Swamy, K. V., & Murthy, I. R. (1999). Inversion of gravity anomalies of three-dimensional density interfaces. Computers & Geosciences, 25(8), 887–896.

    Article  Google Scholar 

  • Rymer, H., & Brown, G. C. (1986). Gravity fields and the interpretation of volcanic structures: geological discrimination and temporal evolution. Journal of Volcanology and Geothermal Research, 27(3–4), 229–254.

    Article  Google Scholar 

  • Scintrex Limited. (2006). CG5 Autograv Operation Manual (p. 304). Canada: Scintrex Limited.

    Google Scholar 

  • Sieron, K., & Siebe, C. (2008). Revised stratigraphy and eruption rates of Ceboruco stratovolcano and surrounding monogenetic vents (Nayarit, Mexico) from historical documents and new radiocarbon dates. Journal of Volcanology and Geothermal Research, 176, 241–264.

    Article  Google Scholar 

  • Smith, R. L. (1979). Ash-flow magmatism. Geological Society of America Special Papers, 180, 5–28.

    Article  Google Scholar 

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293–302.

    Article  Google Scholar 

  • Stock, J. M. (1993). Tectónica de Placas y la Evolución del Bloque de Jalisco, México. GEOS, 13(3), 3–9.

    Google Scholar 

  • Uribe, M. C. R., Núñez-Cornú, F. J., Pichardo, F. A. N., & Suárez-Plascencia, C. (2013). Some insights about the activity of the Ceboruco Volcano (Nayarit, Mexico) from recent seismic low-frequency activity. Bulletin of Volcanology, 75(10), 755.

    Article  Google Scholar 

  • Van Camp, M., & Vauterin, P. (2005). Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Computers & Geosciences, 31(5), 631–640.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by project P24 of CeMIEGeo in charge of Dr. F.J. Núñez-Cornú. We are grateful to Quiriart J. Gutiererez and Juan I. Pinzón for their collaboration during the fieldwork, to Alejandro García Serrano (FI-UNAM) for providing and directing the measurements with the Differential GPS, to David Escobedo (FI-UNAM) for his advice in the operation of the gravity meter and the use of FI-UNAM’s gravity meter to compare our measurements, and to L. Godinez for her help in the elaboration of the figures. J F–C is grateful to Dr. Christian Escudero for his interest and advice in the course of this work. JME thanks CONACYT for its support through sabbatical Grant 261558. We are very grateful to two anonymous reviewers for their constructive criticism, which helped us to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhonattan Fernandez-Cordoba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Cordoba, J., Zamora-Camacho, A. & Espindola, J.M. Gravity Survey at the Ceboruco Volcano Area (Nayarit, Mexico): a 3-D Model of the Subsurface Structure. Pure Appl. Geophys. 174, 3905–3918 (2017). https://doi.org/10.1007/s00024-017-1600-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1600-4

Keywords

Navigation