Skip to main content
Log in

Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this study, receiver functions from ten Broadband seismograph stations on Cenozoic sediment formations of Brahmaputra valley and its neighboring region in northeastern part of India are determined. Receiver function traces from this region show delay in peak by 1–2.5 s and associated minor peaks with the direct P-phase peak. Based on such observation, we try to image sedimentary structure of the Brahmaputra valley plain, adjacent Shillong plateau and Himalayan foredeep region. An adapted hybrid global waveform inversion technique has been applied to extract sedimentary basin structure beneath each site. The sedimentary cover of the basin is about 0.5–6.5 km thick across the valley, 0.5–1.0 km on Shillong plateau and 2.0–5.0 km in nearby foredeep region. We have found that sedimentary thickness increases from SW to NE along the Brahmaputra valley and towards the Eastern Himalayan syntaxes. The estimated sediment thickness and S wave velocity structure agree well with the results of previous active source, gravity, and deep borehole studies carried out in this region. The thick crustal low velocity sediment cover in Brahmaputra valley is expected to amplify ground motions during earthquakes and therefore important for seismic hazard assessment of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambraseys, N., & Bilham, R. (2003). MSK isoseismal intensities evaluated for the 1897 Great Assam Earthquake. Bulletin of the Seismological Society of America, 93, 655–673.

    Article  Google Scholar 

  • Ammon, C. J. (1991). The isolation of receiver effects from the teleseismic P waveforms. Bulletin of Seismological Society of America, 81, 2504–2510.

    Google Scholar 

  • Ammon, C. J., Randall, G. E., & Zandt, G. (1990). On the non-uniqueness of receiver function inversions. Journal of Geophysical Research, 95, 15303–15318.

    Article  Google Scholar 

  • Angelier, J., & Baruah, S. (2009). Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematics implications. Geophysical Journal International,. doi:10.1111/j.1365-246x.2009.04107.x.

    Google Scholar 

  • Ball, J. S., Sheehan, A. F., Stachnik, J. C., Lin, F. C., & Collins, J. A. (2014). A joint Monte Carlo analysis of seafloor compliance, Rayleigh wave dispersion and receiver functions at ocean bottom seismic stations offshore New Zealand. Geochemistry, Geophysics, Geosystems, 15, 5051–5068. doi:10.1002/C005412.

    Article  Google Scholar 

  • Baruah, J. M. B., Mukhopadhyay, A., & Baishya, N. (1975). Lithospheric variation and paleostrustural evolution of Tipam Sandstone formation in part of Upper assam valley. Symp: Sed. Sedimentation & Sedimentary Env.

    Google Scholar 

  • Bhattacharya, P. M., Mukhopadhyay, S., Majumdar, R. K., & Kayal, J. R. (2008). 3-D seismic structure of the northeast India and its implicationfor local and regional tectonics. Journal of Asian Earth Science, 33, 25–41.

    Article  Google Scholar 

  • Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bull. Seism. Soc. Am., 60(1), 29–61.

    Google Scholar 

  • Borcherdt, R.D. & Glassmeyer, G. (1990). Local Geology and its Influence on strong Ground Motion Generated by the Lorna Prieta Earthquake of October 17, 1989”, proceedings, Putting the Pieces Together, Bay Area preparedness Project, October, San Francisco.

  • Cassidy, J. F. (1992). Numerical experiments in broadband receiver function analysis. Bulletin of the Seismological Society of America, 82(3), 1453–1474.

    Google Scholar 

  • Chen, W. P., & Molnar, P. (1990). Source parameters of earthquakes and intraplate deformation beneath the Shillong Plateau and northern Indo-Burma ranges. Journal of Geophysical Research, 95, 12527–12552.

    Article  Google Scholar 

  • Chopra, S., Chang, T. M., Saikia, S., Yadav, R. B. S., Choudhury, P., & Roy, K. S. (2014). Crustal structure of the Gujarat region, India: new constraints from the analysis of teleseismic receiver functions. Journal of Asian Earth Sciences, 96, 237–254.

    Article  Google Scholar 

  • Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research, 101, 3139–3156.

    Article  Google Scholar 

  • Cramer, C. H. (2003). Site specific seismic hazard analysis that is completely probabilistic. Bulletin of the Seismological Society of America, 93(4), 1841–1846.

    Article  Google Scholar 

  • Das, K.C., Sarma, V.S.B., Ayyadurai, M. (2004), Gondwana Sediments: A Promising Hydrocarbon Exploration Target in Assam Shelf,5th Conference & Exposition on Petroleum Geophysics, Hyderabad, pp 468–472.

  • Evans, P. (1932). Tertatry succession in Assam. Trans. Min. Geol. Inst. India, 27, 155.

    Google Scholar 

  • Gururajan, N. S., & Choudhury, B. K. (2003). Geology and tectonic history of the Lohit Valley, Eastern Arunachal Pradesh, India. Journal of Asian Earth Sciences, 21, 731–741.

    Article  Google Scholar 

  • Handique, G. K., & Dutta, S. K. (1980). A study of the Surma-Tipam groups of Assam valley, south of Brahmaputra, Geo. Survey of India, 25, 42–52.

    Google Scholar 

  • Hazarika, D., Arora, B. R., & Bora, C. (2011). Crustal structure and deformation in the northeast India-Asia collision zone: constraints from Receiver function analysis. Geophysical Journal International,. doi:10.1111/j.1365-246X.2011.05267.x.

    Google Scholar 

  • He, C., Dong, S., Santosh, M., & Chen, X. (2013). Seismic evidence for a geosuture between the Yangtze and Cathaysia Blocks. South China. Sci. Rep., 3, 2200. doi:10.1038/srep02200.

    Google Scholar 

  • Hetenyi, G., Cattin, R., Jerome, V., & Nabelek, J. L. (2006). The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modelling. Geophysical Journal International, 167, 1106–1118.

    Article  Google Scholar 

  • Kayal, J. R., Arefiev, S. S., Baruah, S., Hazarika, D., Gogoi, N., Kumar, A., et al. (2006). Shillong Plateau earthquakes in northeast India region: complex tectonic model. Current Science, 91(1), 109–114.

    Google Scholar 

  • Kayal, J. R., & De, R. (1991). Microseismicity and tectonic in Northeast India. Bulletin of Seismological Society America, 81, 131–138.

    Google Scholar 

  • Kind, R., Kosarev, G., & Petersen, N. (1995). Receiver function at the stations of the German Regional Seismic Network (GRSN). Geophysical Journal International, 121, 191–202.

    Article  Google Scholar 

  • Kumar, T.S., Bharali, B.R., Verma, A.K. (2012). Basement configuration and structural style in OIL’s operational areas of Upper Assam, AAPG, 50739.

  • Lahiri, S. K., & Sinha, R. (2014). Morphotectonic evolution of the Majuli Island in the Brahmaputra valley of Assam, India inferred from geomorphic and geophysical analysis. Geomorphology, 227, 101–111.

    Article  Google Scholar 

  • Langston, C. A. (1979). Structure under Mount Rainer, Washington, inferred from teleseismic body waves. Journal Geophysical Research, 84, 4749–4762.

    Article  Google Scholar 

  • Langston, C. A. (2011). Wave-field continuation and decomposition for passive seismic imaging under deep unconsolidated sediments. Bulletin of the Seismological Society of America, 101(5), 2176–2190.

    Article  Google Scholar 

  • Li, J., Tian, B., Wang, W., Zhao, L., & Yao, Z. (2007). Short Note Lateral Variation in the Sedimentary Structure of West Bohai Bay Basin Inferred from P-Multiple Receiver Functions. Bulletin of the Seismological Society of America, 97, 1355–1363.

    Article  Google Scholar 

  • Ligorria, J. P., & Ammon, C. J. (1999). Iterative Deconvolution and Receiver-Function estimation. Bulletin of the Seismological Society of America, 89, 1395–1400.

    Google Scholar 

  • Mallet, F. R. (1876). On the coal field of Naga hills, bordering the Sibsagar and Lakhimpur districts. Geological Survey of India Memoirs, 12, 1–95.

    Google Scholar 

  • Mathur, L.P. & Evans, P. (1964), Oil in India (Sp.Brochure), 22nd Int. Geol. Congress, New Delhi, p. 85.

  • Mavko, G. M. (1980). Velocity and attenuation in partially molten rocks. Geophysical Journal International, 85, 5173–5189.

    Article  Google Scholar 

  • Meijde, M. V. D., Van der Lee, S., & Giardini, D. (2003). Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophysical Journal International, 152, 729–739.

    Article  Google Scholar 

  • Murthy, K. N. (1983). Geology and hydrocarbon prospects of Assam Shelf-recent advances and present status. Petrol. Asia Jour., 6(2), 1–14.

    Google Scholar 

  • Nandy, D.R. (1976). The Assam syntaxis of the Himalayas—a re-evaluation. Geological Survey of India Misc. Pub., 24(2), 363–367.

  • O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracks solids. Journal of Geophysical Research, 79, 5412–5426.

    Article  Google Scholar 

  • Oldham, R. D. (1899). Report on the great earthquake of 1897. Calcutta: Geological Survey of India.

    Google Scholar 

  • Owens, T. J., Zandt, G., & Taylor, S. R. (1984). Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee. Journal of Geophysical Research, 116, 618–636.

    Google Scholar 

  • Pickett, G. R. (1963). Acoustic character logs and their applications in formation evaluation. Journal of Petroleum Technology, 15, 650–667.

    Article  Google Scholar 

  • Rao, N. P., & Kumar, M. R. (1997). Uplift and tectonics of the Shillong plateau, Northeast India. Journal of Physics and Earth, 45, 167–176.

    Article  Google Scholar 

  • Report on “Geology and Mineral resources of Assam”, (2009) Geological Survey of India, 30, vol. 4.

  • Sambridge, M. (1999a). Geophysical inversion with a neighborhood algorithm-I. search a parameter space. Geophysical Journal International, 138, 479–494.

    Article  Google Scholar 

  • Sambridge, M. (1999b). Geophysical inversion with a neighbourhood algorithm-II. Appraising the ensemble. Geophysical Journal International, 138, 727–746.

    Article  Google Scholar 

  • Sandvol, E., Seeber, D., Calvert, A., and Barazangi, M. (1998), Grid search modelling of receiver functions: Implications for crustal structure in the Middle East and North Africa, J. geophys. Res., 103, 26 899–26 917.

  • Seeber, L., Armbruster, J. G., & Quimeyer, R. (1981). Seismicity and continental subduction in the Himalayan Arc. In H. K. Gupta & F. M. Delany (Eds.), Zagros, Hindu Kush, Himalaya, Geodynamic Evolution, Geodynamic Series (Vol. 3, pp. 215–242). Washington, DC: America Geophysical Union.

    Chapter  Google Scholar 

  • Sheehan, A.F., Abers, G.A., Jones, C.H., Lerner-Lam, L. (1995), Crustal thickness variations across the Colorado Rocky Mountains from teleseismic receiver functions, J. Geophys. Res., B10, 100, 20,391–20404.

  • Shibutani, T., Sambridge, M., & Kennett, B. L. N. (1996). Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia. Geophysical Research Letters, 23, 1829–1832.

    Article  Google Scholar 

  • Shrivastava, P. K., Ganesan, S., & Roy, D. (1974). Tipam Group in the sub surface of Assam Valley, south of Brahmaputra. Geological Society of India, 15(2), 165–181.

    Google Scholar 

  • Srinivas, D., Srinagesh, D., Chadha, R. K., & Kumar, M. R. (2011). Sedimentary thickness variations in the Indo-GangeticForedeep from inversion of receiver functions. Bulletin of the Seismological Society of America, 103, 2257–2265.

    Article  Google Scholar 

  • Tandon, A. N. (1954). A study of Assam earthquake of August 1950 and its aftershocks. Indian J. Meteorol. Geophys., 5, 95–137.

    Article  Google Scholar 

  • Zandt, G., & Ammon, C. J. (1995). Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature, 374, 152–154.

    Article  Google Scholar 

  • Zhao, L. S., Sen, M. K., Stoffa, P., & Frohlich, C. (1996). Application of very fast simulated annealing to the determination of the crustal structure beneath Tibet. Geophysical Journal International, 125(2), 355–370.

    Article  Google Scholar 

  • Zheng, T. Y., Zhao, L., & Chen, L. (2005). A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin. Physics of the Earth and Planetary Interiors, 152, 129–143.

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the technical persons of India Meteorological Department for helping to get the earthquake data. SS greatly acknowledged Atul Kumar and Sunil Rohilla for fruitful discussion. I am also indebted to Prof. L. Zhu and two unanimous reviewers, who suggested numerous improvements to the manuscript. The GMT software package distributed by Wessel and Smith (1995) was used for mapping the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sowrav Saikia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, S., Chopra, S., Baruah, S. et al. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis. Pure Appl. Geophys. 174, 229–247 (2017). https://doi.org/10.1007/s00024-016-1371-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1371-3

Keywords

Navigation