Skip to main content
Log in

Predicting Nonlinear Site Response Using Spectral Acceleration Vs PGV/Vs30: A Case History Using the Volvi-Test Site

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this study, we analyze the efficiency of the ratio between particle velocity and shear wave velocity as a strain proxy for evaluating the nonlinear seismic response of sediments. The in situ stress–strain relationships are derived from accelerometric vertical array recordings at the TST site in Volvi (Thessaloniki, Greece). First, the shear wave velocity between two successive sensors was computed by seismic interferometry and strain was computed as the velocity ratio or the relative displacement between sensors. The shear-wave velocity profile and in situ shear modulus degradation curve with strain were compared with previous studies performed at the TST site. Finally, the stress–strain relationships were derived from data recorded at the surface by extending the strain proxy and stress values to the ratio between peak ground velocity and the Vs30 parameter used for site classification, i.e. without requiring the accelerometric vertical array. Our model captures the in situ nonlinear response of the site, without consideration of azimuth or distance of the earthquakes. In conclusion, the acceleration (stress) values, based on the accelerometric response spectra instead of peak ground acceleration compared with the deformation (strain) proxy, provide an effective model of the in situ nonlinear response, providing information that can be integrated into ground motion prediction equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrahamson, N. A., Silva, W. J., and Kamai, R. (2014), Summary of the ASK14 Ground Motion Relation for Active Crustal Regions, Earthquake Spectra, 30(3), 1025–1055.

    Article  Google Scholar 

  • Assimaki, D., Li, W., Steidl, J.H., and Tsuda, K. (2008), Site Amplification and Attenuation via Downhole Array Seismogram Inversion: A comparative Study of the 2003 Miyagi - Oki Aftershock Sequence, Bulletin of the Seismological Society of America, 98(1), 301-330.

    Article  Google Scholar 

  • Beresnev, I.A., Atkinson, G.M., Johnson, P.A., and Field, E.H. Stochastic Finite-Fault Modeling of Ground Motions from the 1994 Northridge, California, Earthquake. II. Widespread Nonlinear Response at Soil Sites. Bulletin of the Seismological Society of America, 88(6): 1402-1410 (1998).

    Google Scholar 

  • Bonilla, L.F., Archuleta, R.J., and Lavallée, D. (2005), Hysteretic and Dilatant Behavior of Cohesionless Soils and Their Effects on Nonlinear site Response: Field Data Observations and Modeling, Bulletin of the Seismological Society of America, 95(6), 2373-2395.

    Article  Google Scholar 

  • Bonilla, L.F., Tsuda, K., Pulido, N., Regnier, J, and Laurendeau, A. (2011), Nonlinear Site Response Evidence of K-Net and KiK-net Records from the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 785-789.

    Article  Google Scholar 

  • Boore, D. On Pads and Filters: Processing Strong-Motion Data. Bulletin of the Seismological Society of America, 95(2): 745–750 (2005).

    Article  Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., and Atkinson, G. M. (2014), NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes, Earthquake Spectra, 30(3), 1057–1085.

    Article  Google Scholar 

  • Chandra, J., Guéguen, P., Steidl, J. H., and Bonilla, L. F. (2015), In-situ Assessment of the G-γ Curve for Characterizing the Nonlinear Response of Soil: Application to the Garner Valley Downhole Array(GVDA) and the Wildlife Liquefaction Array (WLA), Bulletin of Seismological Society of America, 105(2A), 993-1010.

    Article  Google Scholar 

  • Choi, Y., and Stewart, J.P. (2005), Nonlinear Site Amplification as Function of 30 m Shear Wave Velocity, Earthquake Spectra, 21(1), 1-30.

    Article  Google Scholar 

  • Clayton, R.W., and Wiggins, R.A. (1976), Source shape estimation and deconvolution of teleseismic bodywaves, The Geophysical Journal of the Royal Astronomy Society, 47, 151-177.

    Article  Google Scholar 

  • Coutant, O. (1996), Observation of Shallow Anisotropy on Local Earthquake Records at the Garner Valley, Southern California, Downhole Array, Bulletin of the Seismological Society of America, 86(2), 477-488.

    Google Scholar 

  • De Martin, F., H. Kawase, and F. Bonilla (2012). Inversion of equivalent linear soil parameters during the 2011 Tohoku earthquake, Japan, JST/ANR Joint Research ONAMAZU Project–International Symposium on Engineering Lessons Learned from the Giant Earthquake, Kenchiku-kaikan, Tokyo, Japan, 1–4 March.

  • Der Ni, S., Anderson, J.G., Zeng, Y., and Siddharthan, R.V. (2000), Expected Signature of Nonlinearity on Regression for Strong Ground-Motion Parameters, Bulletin of the Seismological Society of America, 90, S53-S64.

    Article  Google Scholar 

  • Derode, A., Larose, E., Tanter, M., De Rosny, J., Tourin, A., Campillo, M., and Fink, M. (2003), Recovering the Green’s Function from Field-Field Correlations in an Open Scattering Medium, The Journal of the Acoustical Society of America, 113(6), 2973-2976.

    Article  Google Scholar 

  • Dobry, R., and Ladd, R. (1980), Discussion of ‘Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes,’ by H.B. Seed and ‘Liquefaction potential: science versus practice,’ by R. B. Peck, Journal of the Geotechnical Engineering Division, 106(6), 720-724.

    Google Scholar 

  • Drnevich, V. P., and Richart, F. E. (1970), Dynamic Prestraining of Dry Sand, Journal of Soil Mechanics and Foundations Division, 96(2), 453-469.

    Google Scholar 

  • Gélis, C., and Bonilla, F. (2012), 2D P-SV Numerical Study of Soil-Source Interaction in a Nonlinear Basin, Geophysical Journal International, 191(3), 1374-1390.

    Google Scholar 

  • Hardin, B. O., and Black, W. L. (1968), Vibration Modulus of Normally Consolidated Clay, Journal of Soil Mechanics and Foundations Division, 94(2), 353-369.

    Google Scholar 

  • Hill, D. P., Reasenberg, P. A., Michael, A., Arabaz, W.J., Beroza, G., Brumbaugh, D., Brune, J. N., Castro, R., Davis, S., dePolo, D., Ellsworth, W. L., Gomberg, J., Harmsen, S., House, L., Jackson, S. M., Johnston, M. J. S., Jones, L., Keller, R., Malone, S., Munguia, L., Nava, S., Pechmann, J. C., Sanford, A., Simpson, R. W., Smith, R. B., Starks, M., Stickney, M., Vidal, A., Walter, S., Wong, V., and Zollweg, J. (1993), Seismicity Remotely Triggered by the Magnitude 7.3 Landers, Caliornia, Earthquake, Science, 260, 1617-1623.

    Google Scholar 

  • Dimitriu, P., Theodulidis, N., Hatzidimitriou, P, and Anastasiadis, A. (2001), Sediment Nonlinearity and Attenuation of Seismic Waves; A Study of Accelerograms from Mefkas, Western Greece, Soil Dynamics and Earthquake Engineering, 21, 63-73.

    Article  Google Scholar 

  • Field, E.H., Johnson, P.A., Beresnev, I., and Zeng, Y. (1997), Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake, Nature, 390, 599-602.

    Article  Google Scholar 

  • Frankel, D.A., (1999), How Does the Ground Shake ?, Science, 283(5410), 2032-2033

    Article  Google Scholar 

  • Frankel, A.D., Carver, D.L., and Williams, R.A. (2002), Nonlinear and Linear Site Response and Basin Effects in Seattle for the M 6,8 Nisqually, Washington, Earthquake, Bulletin of the Seismological Society of America, 92(6), 2090-2109.

    Article  Google Scholar 

  • Gélis, C., and Bonilla, F. (2012), 2D P-SV Numerical Study of Soil-Source Interaction in a Nonlinear Basin, Geophysical Journal International, 191(3), 1374-1390.

    Google Scholar 

  • Idriss, I.M. (2011), Use of Vs 30 to represent Local site Condition, 4 th IASPEI/IAEE International Symposium. Effects of Source Geology on Seismic Motion. August 23-26th, 2011. University of Santa Barbara California.

  • Ishihara, K. Soil Behaviour in Earthquake Geotechnics (Oxford Engineering Science Series. Oxford University Press, 1996).

    Google Scholar 

  • Jongmans, D., Pitilakis, K., Demanet, D., Raptakis, D., Riepl, J., Horrent, C., Tsokas, G., Lontzetidis, K., and Bard, P.-Y. (1998), EURO-SEISTEST: Determination of the Geological Structure of the Volvi Graben and Validation of the Basin Response, Bull. Seismol. Soc. Am. 88, 473–487.

    Google Scholar 

  • Johnson, P.A., and Jia, X. P. (2005), Nonlinear Dynamics, Granular Media and Dynamic Earthquake Triggering, Nature, 437, 871-874.

    Google Scholar 

  • Kim, B., Hashash, Y., Rathje, E. M., Stewart, J. P., Ni, S., Somerville, P. G., Kottke, A. R., Silva, W. J., and Campbell, K.W. (2015), Subsurface shear-wave velocity characterization using P-wave seismograms in Central and Eastern North America, Earthquake Spectra In-Press, doi:10.1193/123013EQS299M

    Google Scholar 

  • Lobkis, O. I., and Weaver, R. L. (2001), On the Emergence of the Green’s function in the Correlations of a Diffuse Field, The Journal of the Acoustical Society of America, 110(6), 3011-3017.

    Article  Google Scholar 

  • Manakou, M.V., Raptakis, D.G., Chávez-García, F.J., Apostolidis, P.I., and Pitilakis, K.D. (2010), 3D Soil Structure of the Mygdonian Basin for Site Response Analysis, Soil Dyn. Earthq. Eng., 30(11), 1198–1211.

    Article  Google Scholar 

  • Mehta, K., Snieder, R., and Graizer, V. (2007), Downhole Receiver Function: a Case Study. Bulletin of the Seismological Society of America, 97(5), 1396-1403.

    Article  Google Scholar 

  • Nakata, N., and Snieder, R. (2011), Near Surface Weakening in Japan after the 2011 Tohoku-Oki Earthquake, Geophysical Research Letters, 38: L17302.

    Article  Google Scholar 

  • Nakata, N., and Snieder, R. (2012), Estimating near-surface wave velocities in Japan by applying seismic interferometry to KiK-net data. Journal of Geophysical Research, 117: B01308.

    Article  Google Scholar 

  • Pavlenko, O., and Irikura, K. (2002), Changes in Shear Moduli of Liquefied and Nonliquefied Soils during the 1995 Kobe Earthquake and its Aftershocks at Three Vertical-Array Sites, Bulletin of the Seismological Society of America, 92(5), 1952-1969.

    Article  Google Scholar 

  • Pavlenko, O., and Irikura, K. (2003), Estimation of Nonlinear Time-Dependent Soil Behavior in Strong Ground Motion Based on Vertical Array Data, Pure and Applied Geophysics, 160, 2365-2379.

    Article  Google Scholar 

  • Pech, A., Sánchez-Sesma, F. J., Snieder, R., Ignicio-Caballero, F., Rodríguez-Castellanos, A., and Ortíz-Alemán, J.C. (2012), Estimate of shear wave velocity, and its time-lapse change, from seismic data recorded at the SMNH01 station of KiK-net using seismic interferometry, Soil Dynamics and Earthquake Engineering, 39:128-137.

    Article  Google Scholar 

  • Pitilakis, K., Roumelioti, Z., Raptakis, D., Manakou, M., Liakakis, K., Anastasiadis, A., and Pitilakis, D. (2013), The EUROSEISTEST Strong Ground Motion Database and Web Portal, Seismol. Res. Lett., 84(5), 796–804.

    Article  Google Scholar 

  • Raptakis, D., Chávez-García, F.J., Makra, K., and Pitilakis, K. (2000), Site Effect at Euroseistest—I. Determination of the Valley Structure and Confrontation of Observations with 1D Analysis, Soil Dyn. Earthq. Eng., 19(1), 1–22.

  • Raptakis, D.G., Manakou, M.V., ChávezGarcía, F.J., Makra, K.A., and Pitilakis, K.D. (2005), 3D Configuration of Mygdonian Basin and Preliminary Estimate of its Seismic Response, Soil Dyn. Earthq. Eng., 25, 871–887.

    Google Scholar 

  • Raptakis, D., and Makra, K. (2015), Multiple Estimates of Soil Structure at a Vertical Strong Motion Array: Understanding Uncertainties from Different Shear Wave Velocity Profiles, Engineering Geology, 192, 1-18

    Article  Google Scholar 

  • Rathje, E. M., Chang, W. J., Stokoe, K. H., and Cox, B. R. (2004), Evaluation of Ground Strain from In Situ Dynamic Response, Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, Paper No. 3099

  • Roumelioti, Z., and Beresnev I. A. (2003), Stochastic Finite-Fault Modeling of Ground Motions from the 1999 Chi-Chi, Taiwan, Earthquake: Application to Rock and Soil Sites with Implications for Nonlinear Site Response. Bulletin of the Seismological Society of America, 93(4): 1691-1702.

    Article  Google Scholar 

  • Rubinstein, J.L, and Beroza, G.C. (2004), Evidence for Widespread Nonlinear Strong Ground Motion in the Mw 6,9 Loma Prieta Earthquake, Bulletin of the Seismological Society of America, 94(5), 1595-1608.

    Article  Google Scholar 

  • Rubinstein, J.L, and Beroza, G.C. (2005), Depth Constraints on Nonlinear Strong Ground Motion from the 2004 Parkfield Earthquake, Geophysical Research Letters, 32, L14313.

    Article  Google Scholar 

  • Sawazaki. K, Sato, H., Nakahara, H., and Nishimura, T. (2009), Time-Lapse Changes of Seismic Velocity in The Shallow Ground caused by Strong ground Motion Shock of the 2000 Western-Totori Earthquake, Japan, as revealed from Coda Deconvolution Analysis, Bulletin of the Seismological Society of America, 99(1), 352-366.

    Article  Google Scholar 

  • Schuster, G. T., Yu, J., Sheng, J., and Rickett, J. (2004), Interferometric/daylight Seismic Imaging. Geophysical Journal International, 157(2), 838-852.

    Article  Google Scholar 

  • Seed, H.B., Wong, R.T., Idriss, I.M., Tokimatsu, T. (1984), Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils, Earthquake Engineering Research Center. Report No. UCB/EERC-84/14.

  • Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. (2005), High-Resolution Surface-Wave Tomography from Ambient Seismic Noise, Science, 307(5715), 1615-1618.

    Article  Google Scholar 

  • Sleep, N.H. (2010), Nonlinear Behavior of Strong Surface Waves Trapped in Sedimentary Basins, Bulletin of the Seismological Society of America, 100(2), 826-832.

    Article  Google Scholar 

  • Snieder, R. (2004), Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase, Physical Review E, 69(4), 046610.

    Article  Google Scholar 

  • Snieder, R., and Şafak, E. (2006), Extracting the Building Response Using Seismic Interferometry: Theory and Application to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America, 96(2), 586-598.

    Article  Google Scholar 

  • Snieder, R., Wapenaar, K., and Larner, K. (2006), Spurious Multiples in Seismic Interferometry of Primaries, Geophysics, 71(4), SI111-SI124.

  • Vucetic, M. (1994), Cyclic Threshold Shear Strains in Soils, Journal of Geotechnical Engineering, 120, 2208-2228.

    Article  Google Scholar 

  • Wapenaar, K. (2004), Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation, Physical review letters, 93(25), 254301.

    Article  Google Scholar 

  • Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A. Tutorial on seismic interferometry: Part 1 – Basic principles and applications. Geophysics, 75(5): 75A195-75A209 (2010).

    Google Scholar 

  • Wu, C., Peng, Z., and Assimaki, D. (2009), Temporal Changes in Site Response Associated with the Strong Ground Motion of the 2004 M w 6.6 Mid-Niigata Earthquake Sequences in Japan, Bulletin of the Seismological Society of America, 99(6), 3487-3495.

    Article  Google Scholar 

  • Youd, T. L. (1972), Compaction of Sands by Repeated Shear Straining, Journal of Soil Mechanics and Foundation Engineering Division, 98(7), 709-725.

    Google Scholar 

  • Yu, G., Anderson, J.G., and Siddharthan, R.V. (1993), On the characteristics of nonlinear soil response Bulletin of the Seismological Society of America, 83, 218-244

    Google Scholar 

  • Zeghal, M., Elgamal, A., Tang, H., and Stepp, J. (1995), Lotung Downhole Array. II: Evaluation of Soil Nonlinear Properties, J. Geotech. Engrg., 121(4), 363–378.

Download references

Acknowledgments

This study was sponsored by the Urban Seismology project at the Institute of Earth Science ISTerre of the University of Grenoble-Alpes. We thanks Zafeiria Roumelioti from Aristotle University of Thessaloniki to have prepared the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guéguen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guéguen, P. Predicting Nonlinear Site Response Using Spectral Acceleration Vs PGV/Vs30: A Case History Using the Volvi-Test Site. Pure Appl. Geophys. 173, 2047–2063 (2016). https://doi.org/10.1007/s00024-015-1224-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1224-5

Keywords

Navigation