Skip to main content
Log in

Seismic Structures in the Earth’s Inner Core Below Southeastern Asia

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Documenting seismic heterogeneities in the Earth’s inner core (IC) is important in terms of getting an insight into its history and dynamics. A valuable means for studying properties and spatial structure of such heterogeneities is provided by measurements of body waves refracted in the vicinity of the inner core boundary (ICB). Here, we investigate eastern hemisphere of the solid core by means of PKPBC–PKPDF differential travel times that sample depths from 140 to 360 km below its boundary. We study 292 polar and 133 equatorial residuals measured over the traces that probe roughly the same volume of the IC in both planes. Equatorial residuals show slight spatial variations in the sampled IC volume mostly below the level of 0.5 %, whereas polar residuals are up to three times as big, direction dependent and can exhibit higher local variations. The measurements reveal fast changes in seismic velocity within a restricted volume of the IC. We interpret the observations in terms of anisotropy and check against several anisotropy models few of which have been found capable of fitting the residuals scatter. We particularly quantify the model where a dipping discontinuity separates fully isotropic roof of the IC from its anisotropic body, whereas the depth of isotropy–anisotropy transition increases in southeast direction from 190 km below Southeastern Asia (off the coast of China) to 350 km beneath Australia. Another acceptable model cast in terms of localized anisotropic heterogeneities is valid if 33 largest polar measurements over the rays sampling a small volume below Southeastern Asia and the rest of polar data are treated separately. This model envisages almost isotropic eastern hemisphere of the IC at least down to the depth of 360 km below the ICB and constrains the anisotropic volume only to the ranges of North latitudes from 18° to 23°, East longitudes from 125° to 135° and depths exceeding 170 km. The anisotropy strength in either model is about 2 %. Further effective pursuit of the models presents challenges in terms of resolution and coverage and basically requires a significant dataset extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Attanayake, J., Cormier, V.F., Susini M. de Silva, 2014. Uppermost inner core seismic structure—new insights from body waveform inversion. Earth and Planet. Sci. Lett. 385, 49–58.

  • Bergman, M.I., 1997. Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth’s inner core. Nature, 424, 1032–1034.

  • Brown, J.M., McQueen, R.G., 1986. Phase transitions, grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa, J. Geophys. Res., 91, B7, 7485–7494.

  • Červený, V. (2001). Seismic ray theory. Cambridge Univ. Press, Cambridge.

  • Cormier, V.F., 1981. Short-period PKP phases and the anelastic mechanism of the inner core, Phys. Earth planet. Inter., 24, 291–301.

  • Creager, K.C., 1997. Inner core rotation rate from small-scale heterogeneity and time-varying travel times. Science. 278, 1284–1288.

  • Creager, K.C., 1999. Large-scale variations in inner core anisotropy. J. Geophys. Res. 104, 23127–23139.

  • Doornbos, D.J., 1988. Seismological Algorithms, Academic Press, London.

  • Garcia, R., 2002a. Seismological and mineralogical constraints on the inner core fabric. Geophys. Res. Lett., 29(20), 1958–1960, doi:10.1029/2002GL015268.

  • Garcia, R., 2002b. Constraints on upper inner-core structure from waveform inversion of core phases. Geophys. J. Int., 150(3), 651–664.

  • Garcia, R., Souriau, A., 2000. Inner core anisotropy and heterogeneity level. Geophys. Res. Lett., 27(19), 3121–3124.

  • Irving, J. C. E., Deuss, A., 2011. Hemispherical structure in inner core velocity anisotropy, J. Geophys. Res., 116, B04307, doi:10.1029/2010JB007942.

  • Ishii, M., & Dziewonski, A.M., 2002. The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. Proceed. of Nat. Acad. of Sci., 99 (22), 14026–14030.

  • Isse, T., Nakanishi, I., 2002. Inner core anisotropy beneath Australia and differential rotation, Geophys. J. Int., 151, 255–263.

  • Jacobs J.A., 1953. The Earth’s inner core. Nature, 172, 297–298.

  • Jeanloz, R., H.-R. Wenk, 1988. Convection and anisotropy of the inner core, Geophys. Res. Lett., 15, 772–75.

  • Karato, S.-I., 1993. Inner core anisotropy due to magnetic field-induced preferred orientation of iron. Science, 262, 1708–1711.

  • Karato, S.-I., 1999. Seismic anisotropy of the Earth’s inner core resulting from flow induced by Maxwell stresses. Nature, 402, 871–873.

  • Kennett, B. L. N., Engdahl, E. R., Buland R., 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124.

  • Li, C., van der Hilst, R.D., Engdahl, E.R., Burdick, S., 2008. A new global model for P wave speed variations in the Earth’s mantle. Geochem. Geophys. Geosyst. 9(5), 1–21, Q05018, doi:10.1029/2007GC001806.

  • Lythgoe K, Deuss A, Rudge J, Neufeld J. 2013. Earth’s inner core: innermost inner core or hemispherical variations? Earth Planet. Sci. Lett. 385, 181–189.

  • Marshall P.D., Porter D., Young J.B., Pearchell P.A., 1996. Analysis of short-period seismograms from explosions at the Novaya Zemlya test site in Russia. ARWE report O 2/94.

  • Mattesini, M., A.B. Belonoshko, H. Tkalčić, E. Buforn, A. Udias and R. Ahuja, 2013. Candy wrapper for the Earth’s inner core. Scientific Reports (by Nature Publishing Group), 3:2096, doi:10.1038/srep02096.

  • Mensch, T., P. Rasolofosaon, Elastic-wave velocities in anisotropic media of arbitrary symmetry—generalizatio n of Thomsen’s parameters ε, d and g, Geophys. J. Int., 128, 43–64, 1997.

  • Morelli, A., Dziewonski, A.M., Woodhouse, J.H., 1986. Anisotropy of the core inferred from PKIKP travel times. Geophys. Res. Lett. 13, 1545–1548.

  • Niu, F., Wen, L., 2002. Seismic anisotropy in the top 400 km of the inner core beneath the “eastern” hemisphere, Geophys. Res. Lett., 29(12), 1611, doi:10.1029/2001GL014118.

  • Ohtaki, T., S. Kaneshima, and K. Kanjo. 2012. Seismic structure near the inner core boundary in the south polar region. J. Geophys. Res., 117, B03312, doi:10.1029/2011JB008717.

  • Ovtchinnikov, V.M., Kaazik, P.B., Krasnoshchekov, D.N., 2012. Weak velocity anomaly in the Earth’s outer core from seismic data. Izvestiya, Physics of the Solid Earth, 48(3), 211–221.

  • Poupinet, G., Pillet R., Souriau, A., 1983. Possible heterogeneity in the Earth’s core deduced from PKIKP travel times. Nature 305, 204–206, doi:10.1038/305204a0.

  • Romanowicz, B., Tkalčić, H. & Bréger, L., 2003. On the origin of complexity in PKP travel time data, in Earth’s Core: Dynamics, Structure, Rotation, Geodyn. Ser., vol. 31, edited by V. Dehant et al., pp. 31–44, AGU, Washington, D.C.

  • Song, X.D., Helmberger, D.V., 1995. Depth dependence of anisotropy of Earth’s inner-core. J. Geophys. Res. 100 (B6), 9805–9816.

  • Song X., and Helmberger, D.V., 1998. Seismic evidence for an inner core transition zone. Science, 282, 924–927.

  • Song, X., and Xu, X., 2002. Inner core transition zone and anomalous PKP(DF) waveforms from polar paths. Geophysical Research Letters, 29: 1–4.

  • Souriau, A., 1998. New seismological constraints on differential rotation of the inner core from Novaya Zemlya events recorded at DRV, Antarctica, Geophys. J. International, 134, F1–F5.

  • Su, W., Dziewonski, A. M., 1995. Inner core anisotropy in three dimensions, J. Geophys. Res., 100, 9831–9853.

  • Sun X., Song X., 2008. The inner inner core of the Earth: Texturing of iron crystals from three-dimensional seismic anisotropy. Earth and Planetary Science Letters 269, 56–65.

  • Sun X., Song X., 2008. Tomographic inversion for three-dimensional anisotropy of the Earth’s inner core. Phys. Earth Planet. Inter. 167, 53–70.

  • Tanaka, S., Hamaguchi, H., 1997. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)–PKP(DF) times. J. Geophys. Res. 102, B2. 2925–2938, doi:10.1029/96JB03187.

  • Tkalčić, H., 2010. Large variations in travel times of mantle-sensitive seismic waves from the South Sandwich Islands: Is the Earth’s inner core a conglomerate of anisotropic domains? Geophys. Res. Lett., 37, L14312, doi:10.1029/2010GL043841.

  • Wang, T., Song, X., Xia, H. 2015. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda. Nature Geoscience 8, 224–227, doi:10.1038/ngeo2354.

  • Waszek, L., Deuss, A., 2011. Distinct layering in the hemispherical seismic velocity structure of Earth’s upper inner core. J. Geophys. Res., 116, B12313, doi:10.1029/2011JB008650.

  • Woodhouse, J. H., Giardini, D., Li, X.-D., 1986. Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett. 13, 1549–1552.

  • Yoshida, S., I. Sumita, I., Kumazawa, M., 1996. Growth model of the inner core coupled with the outer core dynamics and the resulting anisotropy. J. Geophys. Res., 101, 28085–28103.

  • Yu, W., L. Wen, 2006. Seismic velocity and attenuation structures in the top 400 km of the inner core along the equatorial paths, J. Geophys. Res., 111, B07308, doi:10.1029/2005JB003995.

  • Yu, W., L. Wen, 2007. Complex seismic anisotropy in the top of the Earth’s inner core beneath Africa, J. Geophys. Res., 112, B08304, doi:10.1029/2006JB004868.

Download references

Acknowledgments

Authors thank the anonymous reviewer for helpful comments. This study was partially supported by the Russian Foundation for Basic Research Grant No. 14-05-00447 and personal grant to Dr. Krasnoshchekov from Academia of Finland. We thank IRIS DMC for providing a part of other seismic data. Authors also acknowledge Paul Wessel and University of Hawaii for General Mapping Tools that helped to make the location map. The POLENET/LAPNET project was a part of the International Polar Year 2007–2009 and a part of the POLENET IPY consortium. Organizations participated in the POLENET/LAPNET project are: (1) Sodankylä Geophysical Observatory of the University of Oulu (Finland), (2) Institute of Seismology of the University of Helsinki (Finland), (3) University of Grenoble (France), (4) University of Strasbourg (France), (5) Institute of Geodesy and Geophysics, Vienna University of Technology (Austria), (6) Geophysical Institute of the Czech Academy of Sciences, Prague (Czech republic), (7) Institute of Geophysics ETH Zürich (Switzerland), (8) Institute of Geospheres Dynamics of the Russian Academy of Sciences, Moscow (Russia), (9) The Kola Regional Seismological Centre, of the Russian Academy of Sciences (Russia), (10) Geophysical Centre of the Russian Academy of Sciences, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (Russia), (11) Swedish National Seismological Network, University of Uppsala (Sweden), (12) Institute of Solid Earth Physics, University of Bergen (Norway), (13) NORSAR (Norway), (14) University of Leeds (UK). Equipment for the temporary deployment was provided by RESIF-SISMOB, FOSFORE, EOST-IPG Strasbourg Equipe sismologie (France), seismic pool (MOBNET) of the Geophysical Institute of the Czech Academy of Sciences (Czech republic), instrument pool of Sodankylä Geophysical Observatory (Finland), Institute of Geosphere Dynamics of RAS (Russia), Institute of Geophysics ETH Zürich (Switzerland), Institute of Geodesy and Geophysics, Vienna University of Technology (Austria), University of Leeds (UK). Funding agencies that provided support for organization of the experiment are: Finland: The Academy of Finland (Grant No. 122762) and University of Oulu. France: BEGDY program of the Agence Nationale de la Recherche, Institut Paul Emil Victor and ILP (International Lithosphere Program). Task force VIII. Czech Republic: Grant No. IAA300120709 of the Grant Agency of the Czech Academy of Sciences Russian Federation: Russian Academy of Sciences (Programs No. 5 and No. 9). POLENET/LAPNET Working Group: Elena Kozlovskaya (1), Helle Pedersen (3), Jaroslava Plomerova (6), Ulrich Achauer (4), Eduard Kissling (7), Irina Sanina (8), Teppo Jämsen (1), Hanna Silvennoinen (1), Catherine Pequegnat (3), Riitta Hurskainen (1), Robert Guiguet (3), Helmut Hausmann (5), Petr Jedlicka (6), Igor Aleshin (10), Ekaterina Bourova (3), Reynir Bodvarsson (11), Evald Brückl (5), Tuna Eken (6), Pekka Heikkinen (2) Gregory Houseman (14), Helge Johnsen (12), Elena Kremenetskaya (9), Kari Komminaho (2), Helena Munzarova (6) Roland Roberts (11), Bohuslav Ruzek (6), Hossein Shomali (11), Johannes Schweitzer (13), Artem Shaumyan (8), Ludek Vecsey (6), Sergei Volosov (8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Krasnoshchekov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnoshchekov, D., Kaazik, P., Kozlovskaya, E. et al. Seismic Structures in the Earth’s Inner Core Below Southeastern Asia. Pure Appl. Geophys. 173, 1575–1591 (2016). https://doi.org/10.1007/s00024-015-1207-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1207-6

Keywords

Navigation