Skip to main content
Log in

Effects of Physical Processes and Sampling Resolution on Fault Displacement Versus Length Scaling: The Case of the Cantarell Complex Oilfield, Gulf of Mexico

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this paper, we first review some factors that may alter the fault D max /L ratio and scaling relationship. The three main physical processes are documented as follows: (1) The D max /L ratio increases in an individual segmented fault, whereas it decreases in a fault array consisting of two or more fault segments. This effect occurs at any scale during fault growth and in any type of rock. (2) Vertical restriction decreases the D max /L ratio along the fault strike due to mechanical layers. (3) The D max /L ratio increases or decreases due to fault reactivation depending on the type of reactivation. Thus, using data from the normal faults of the Cantarell oilfield in the southern Gulf of Mexico, we document that the displacement (D max ) and length (L) show a weak correlation of linear or power-law scaling, with exponents that are much less than 1 (n ≈ 0.5). This scaling relation is due to the combination of the physical processes mentioned above, as well as sampling effects, such as technique resolution. These results indicate that sublinear scaling (n ≈ 0.5) can occur as a result of more than one physical process during faulting in a studied area. In addition to the physical processes associated with brittle deformation in the studied area, the sampling resolution dramatically affects the exponents of the D max L scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acocella, V., and Neri, M., (2005), Structural features of an active strike-slip fault on the sliding flank of Mt. Etna (Italy), J. Struct. Geol. 27, 343–355.

  • Agosta, F., and Aydin, A. (2006), Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, central Italy, J. Struct. Geol. 28, 1445–1467.

  • Alaniz-Alvarez, S.A., Nieto-Samananiego, A.F., and Tolson, G. (1998), A graphical technique to predict slip along a preexisting plane of weakness, Eng. Geol. 49, 53–60.

  • Angelier, J., Fault slip analysis and paleostress reconstruction, In Continental Deformation (ed. Hancock, P.L.) (Pergamon, Oxiford 1994) pp. 101–120.

  • Angeles-Aquino, F.J., Reyes-Nuñez, J., Quezada-Muñetón, J.M., and Meneses-Rocha, J.J. (1994), Tectonic evolution, structural styles and oil habitat in Campeche sound, Mexico, GCAGS Trans. XLIV, 53–62.

  • Aquino-Lopez, J.A. (1999), El Gigante Cantarell: un ejemplo de producción mejorada. Conjunto AMGP/AAPG, Tercera Conferencia Internacional.

  • Baudon, C., Cartwright, J. (2008), The kinematics of reactivation of normal faults using high resolution throw mapping, J. Struct. Geol. 30, 1–13.

  • Benedicto, A., Schultz, R. A., and Soliva, R. (2003), Layer thickness and the shape of faults, Geophys. Res. Lett. 30, 2076. doi:10.1029/2003GL018237.

  • Bergen, K.J., and Shaw, J.H. (2010), Displacement profiles and displacement-length scaling relationships of thrust faults constrained by seismic-reflection data, GSA Bull. 122, 1209–1219.

  • Bird, D.E., Burke, K., Hall, S.A., and Casey, J.F. (2005), Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution, AAPG Bull. 89, 311–328.

  • Bohnenstiehl, D.R., and Kleinrock, M.C. (2000), Evidence for spreading-rate dependence in the displacement-length ratios of abyssal hill faults at mid-ocean ridges, Geology 28, 395–398.

  • Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001), Scaling of fracture systems in geological media, Rev. Geophys. 39, 347–383.

  • Cartwright, J.A., Trudgill, B.D., and Mansfield, C.S. (1995), Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah, J. Struct. Geol. 17, 1319–1326.

  • Childs, C., Watterson, J., and Walsh, J.J. (1995), Fault overlap zones within developing normal fault system, J. Geol. Soc. Lond. 152, 535–549.

  • Childs, C., Nicol, A., Walsh, J.J., and Watterson, J. (2003), The growth and propagation of synsedimentary faults, J. Struct. Geol. 25, 633–648.

  • Clark, R.M., and Cox, S.J.D. (1996), A modern regression approach to determining fault displacement–length scaling relationships, J. Struct. Geol. 18, 147–151.

  • Cooke, M.L., and Underwood, C.A. (2001), Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening, J. Struct. Geol., 23, 223–238.

  • Cowie, P.A., and Scholz, C.H. (1992), Displacement-length scaling relationship for faults: data synthesis and discussion, J. Struct. Geol. 14, 1149–1156.

  • Davison, I., Alsop, G.I. and BlundelL, D., 1996, Salt tectonics: some aspects of deformation mechanics, In Salt Tectonics (eds. Alsop, G.I., Blundell, D., and Davison, I.), Geol. Soc. Spec. Publ. 100, 1–10.

  • Davis, K., Burbank, D.W., Fisher, D., Wallace, S., and Nobes, D. (2005), Thrust-fault growth and segment linkage in the active Ostler fault zone, New Zealand, J. Struct. Geol. 27, 1528–1546.

  • Dawers, N.H., Anders, M.H., and Scholz, C.H. (1993), Growth of normal faults: Displacement-length scaling, Geology 21, 1107–1110.

  • Dawers, N. H., and Anders, M. H. (1995), Displacement-length scaling and fault linkage, J. Struct. Geol. 17, 607–614.

  • Ferrill, D.A., Morris, A.P., Jones, S.M., and Stamatakos, J.A. (1998), Extensional layer-parallel shear and normal faulting, J. Struct. Geol. 20, 355–362.

  • Ferrill, D.A., Stamatakos, J.A., and Sims, D. (1999), Normal fault corrugation: implications for growth and seismicity of active normal faults, J. Struct. Geol. 21, 1027–1038.

  • Fossen, H., Schultz, R.A., Shipton, Z.K., and Mair, K. (2007), Deformation bands in sandstone: a review, J. Geol. Soc. Lond. 164, 755–769.

  • Fort, X., Brun, J.-P., and Chauvel, F. (2004), Salt tectonics on the Angolan margin, synsedimentary deformation processes, AAPG Bull. 88, 1523–1544.

  • García-Hernández, J., González-Castillo, M., and Zavaleta-Ruiz, J. (2005), Structural style of the Gulf of Mexico´s Cantarell complex, The Leading Edge 24, 136–138.

  • Gillespie, P., Walsh, J.J., and Watterson, J. (1992), Limitations of displacement and dimension data from single faults and the consequences for data analysis and interpretation, J. Struct. Geol. 14, 1157–1172.

  • Gómez-Cabrera, P.T., and Jackson, M.P.A. (2009), Regional Neogene salt tectonics in the offshore Salina del Istmo Basin, southeastern Mexico, in C. Bartolini and J. R. Roman Ramos, eds., Petroleum systems in the southern Gulf of Mexico, AAPG Memoir 90, 1–28.

  • Graham, B., Antonellini, M., and Aydin, A. (2003), Formation and growth of normal faults in carbonates within a compressive environment, Geology 31, 11–14.

  • Grajales-Nishimura, J.M., Cedillo-Pardo, E., Rosales-Dominguez, M.C., Moran-Centeno, D.J., Alvarez, W., Claeys, R, Ruiz-Morales, J., Garcia-Hemandez, J., Padilla-Avila, E, and Sanchez-Rios, A. (2000), Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields, Geology 28, 307–310.

  • Grant, J.V., and Kattenhorn, S.A. (2004), Evolution of vertical faults at an extensional plate boundary, southwest Iceland, J. Struct. Geol. 23, 537–557.

  • Gross, M. (1993), The origin and spacing of cross joints: examples from the Monterey Formation, Santa Barbara Coastline, California, J. Struct. Geol. 15, 737–751.

  • Gross, M.R., Gutiérrez-Alonso, G., Bai, T., Wacker, M.A., Collinsworth, K.B., and Behl, R.J. (1997), Influence of mechanical stratigraphy and kinematics on fault scaling relations, J. Struct. Geol. 19, 171–183.

  • Gudmundsson, A. (1987), Tectonics of the Thingvellir Fissure Swarm, SW Iceland, J. Struct. Geol. 9, 61–69.

  • Gudmundsson, A., Simmenes, T.H., Larsen, B., and Philipp, S.L. (2000), Fracture dimensions, displacements, and fluid transport, J. Struct. Geol. 22, 1221–1231.

  • Gudmundsson, A. (2004), Effects of Young’s modulus on fault displacement, CR Geosci. 336, 85–92.

  • Gudmundsson, A., Simmenes, T.H., Larsen, B., and Philipp, S.L. (2010), Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones, J. Struct. Geol. 32, 1643–1655.

  • Gudmundsson, A., Rock Fractures in Geological Processes (Cambridge University Press 2011).

  • Gudmundsson, A., De Guidi, G., and Scudero, S. (2013), Length-displacement scaling and fault growth, Tectonophysics 608, 1298–1309.

  • Gudmundsson, A. and Mohajeri, N. (2013), Relations between the scaling exponents, entropies, and energies of fracture networks, Bull. Geol. Soc. France 184(3), 1–39.

  • Gudmundsson, A. (2014), Elastic energy release in great earthquakes and eruptions, Front. Earth Sci. 2, 1–12. doi:10.3389/feart.2014.00010.

  • Gupta, A., and Scholz, C.H. (2000), A model of normal fault interaction based on observations and theory, J. Struct. Geol. 22, 865–879.

  • Hatton, C.G., Main, I.G., and Meredith, P.G. (1994), Non-universal scaling of fracture length and opening displacement, Nature 367, 160–162.

  • Henza, A.A., Withjack, M.O., and Schlische, R.W. (2011), How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension? J. Struct. Geol. 33, 1312–1324.

  • Hus, R., Acocella, V., Funiciello, R., and De Batist, M. (2005), Sandbox models of relay ramp structure and evolution, J. Struct. Geol. 27, 459–473.

  • Jaeger, J.C., and Cook, N.G.W., Fundamentals of Rock Mechanics (Methuen, London 1969).

  • Jaeger, J.C., Cook, N.G.W., and Zimmerman, R., Fundamentals of Rock Mechanics (Blackwell, Oxford, 2007).

  • Johnston, J.D., and McCaffrey, K.J.W. (1996), Fractal geometries of vein systems and the variation of scaling relationships with mechanism, J. Struct. Geol. 18, 349–358.

  • de Jossineau, G., Bazalgette, L., Petit, J.-P., and Lopez, M. (2005), Morphology, intersections, and syn/late-diagenetic origin of vein networks in pelites of of the Lodève Permian Basin, Southern France, J. Struct. Geol. 27, 67–87.

  • Kim, Y., and Sanderson, D. (2005), The relationship between displacement and length of faults, Earth Sci. Rev. 68, 317–334.

  • Kelly, P.G., Peacock, D.C.P., Sanderson, D.J., and McGurk, A.C. (1999), Selective reverse-reactivation of normal faults, and deformation around reverse-reactivated faults in the Mesozoic of the Somerset coast, J. Struct. Geol. 493–509.

  • Larsen, B., Gudmundsson, A., Grunnaleite, I., Saelen, G., Talbot, M.R., and Buckley, S.J. (2010), Effects of sedimentary interfaces on fracture pattern, linkage, and cluster formation in peritidal carbonate rocks, Mar. Petrol. Geol. 27(7), 1531–1550.

  • Lavenu, A.P.C., Lamarche, J., Salardon, R., Gallois, A., Marié, L., and Gauthier, B.D.M. (2014), Relating background fractures to diagenesis and rock physical properties in a platform–slope transect. Example of the Maiella Mountain (Central Italy), Mar. Petrol. Geol. 51, 2–19.

  • Leclére, H., and Fabbri, O. (2013), A new three-dimensional method of fault reactivation analysis, J. Struct. Geol., 48, 153–161.

  • Lu, C.; Mai, Y.W.; Xie, H. (2005), A sudden drop of scaling exponent: A likely precursor of catastrophic failure in disordered media, Phil. Mag. Lett. 85, 33–40.

  • Maerten, L., Willemse, E.J.M., Pollard, D.D., and Rawnsley, K. (1999), Slip distributions on intersecting normal faults, J. Struct. Geol. 21, 259–271.

  • Mandujano, V.J.J., and Keppie, M.J.D. (2006), Cylindrical and conical fold geometries in the Cantarell structure, southern Gulf of Mexico: implications for hydrocarbon exploration, J. Petrol. Geol. 29, 215–226.

  • Manighetti, I., King, G.C.P., Gaudemer, Y., Scholz, C.H., and Doubre, C. (2001), Slip accumulation and lateral propagation of active normal faults in Afar, J. Geophys. Res. 106, 13, 667.

  • Mansfield, C., and Cartwright, J. (2001), Fault growth by linkage: observations and implications from analogue models, J. Struct. Geol. 23, 745–763.

  • Manzocchi, T., Walsh, J.J., and Bailey, W.R. (2009), Population scaling biases in map samples of power-law fault systems, J. Struct. Geol. 31, 1612–1626.

  • Marrett, R., and Allmendinger, R.W. (1991), Estimates of strain due to brittle faulting: sampling of fault populations, J. Struct. Geol. 13, 735–737.

  • Mitra, S., Figueroa, G.C., García-Hernández, J., and Alvarado-Murillo, A. (2005), Three-dimensional structural model of the Cantarell and Sihil structures, Campeche Bay, Mexico, AAPG Bull. 89, 1–26.

  • Mitra, S., Gonzalez, J.A., Garcia, J.H., and Ghosh, K. (2007), Ek-Balam field: A structure related to multiple salt stages of salt tectonics and extension, AAPG Bull. 91, 1619–1636.

  • Morris, A., David, A.F., and Henderson, B. (1996), Slip-tendency analysis and fault reactivation, Geology 24, 275–278.

  • Nemser, E.S., and Cowan, D.S. (2009), Downdip segmentation of strike-slip fault zones in the brittle crust, Geology 37, 419–422.

  • Nicol, A., Walsh, J.J., Watterson, J., Gillespie, P.A., and Wojtal, S.F. (1996), Fault size distributions; are they really power-law? J. Struct. Geol. 18, 191–197.

  • Olson, J.E. (2003), Sublinear scaling of fracture aperture versus length: an exception or the rule? J. Geophys. Res. 108, 2413. doi:10.1029/2001JB000419.

  • Peacock, D.C.P., and Sanderson, D.J. (1994), Geometry and development of relay ramps in normal fault systems, AAPG Bull. 78, 147–165.

  • Peacock, D.C.P. (2002), Propagation, interaction and linkage in normal fault systems, Earth Sci. Rev. 58, 121–142.

  • PEMEX-Exploración and Producción, Las Reservas de Hidrocarburos de México. Volumen II: Los principales campos de petróleo y gas de México (PEMEX Report 1999).

  • Pickering, G., Peacock, D.C.P., Sanderson, D.J., and Bull, J.M. (1997), Modelling tip zones to predict the throw and length characteristics of faults, AAPG Bull. 81, 82–99.

  • Pindell, J., and Kennan, L. (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update, In The Origin and Evolution of the Caribbean Plate (eds. James, K.H., et al.), Geol. Soc. Spec. Publ. 328, 1–55.

  • Parrish, S., and Arsdale, R.V. (2004), Faulting along the Southeastern Margin of the Reelfoot Rift in Northwestern Tennessee Revealed in Deep Seismic-reflection Profiles, Seismol. Res. Lett. 75, 784–793.

  • Richard, P., and Krantz, R. (1991), Experiments on fault reactivation in strike-slip mode, Tectonophysics 188, 117–131.

  • Santiago, J. and Baro, A. (1992), Mexico’s giant fields, 1978–1988 decade, in M.T. Halbouty, ed., Giant oil and gas fields of the decade 1978–1988, AAPG Memoir 54, 73–99.

  • Sawyer, D.S., Buffler, R.T., and Pilger, Jr., R.H. (1991), The crust under the Gulf of Mexico basin. In: A. Salvador, ed., The Gulf of Mexico Basin: The Geology of North America, Vol. J., The Geology Society of America, Boulder, Colorado, 52–72.

  • Schlische, R.W., Young, S.S., and Ackermann, R.V. (1996), Geometry and scaling relations of a population of very small rift-related norm faults, Geology 24, 683–686.

  • Scholz, C.H. (1994), Reply to comments on ‘A reappraisal of large earthquake scaling’, Bull. Seismol. Soc. Am. 84, 1677.

  • Schultz, R.A., and Fossen, H. (2002), Displacement-length scaling in three dimensions: the importance of aspect ratio and application to deformation bands, J. Struct. Geol. 24, 1389–1411.

  • Schultz, R.A., Okubo, C.H., and Wilkins, S.J. (2006), Displacement-length scaling relations for faults on the terrestrial planets, J. Struct. Geol. 28, 2182–2193.

  • Schultz, R.A., Soliva, R., Fossen, H., Okubo, C.H., and Reeves, D.M. (2008), Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them, J. Struct. Geol. 30, 1405–1411.

  • Salvador, A. (1991), Origin and development of the Gulf of Mexico basin. In: The Gulf of Mexico Basin, The Geology of North America, Geological Society of America (ed. Salvador, A.), Boulder, CO, v.J, pp. 389–444.

  • Soliva, R., and Benedicto, A. (2005), Geometry, scaling relations and spacing of vertically restricted normal faults, J. Struct. Geol. 27, 317–325.

  • Soliva, R., and Schultz, R.A. (2008), Distributed and localized faulting in extensional settings: Insight from the North Ethiopian Rift—Afar transition area, Tectonics 27, TC2003. doi:10.1029/2007TC002148.

  • Vétel, W., Gall, B., and Walsh, J.J. (2005), Geometry and growth of an inner rift fault pattern: the Kino Sogo Fault Belt, Turkana Rift (North Kenya), J. Struct. Geol. 27, 2204–2222.

  • Walsh, J.J., Nicol, A., and Childs, C. (2002), An alternative model for the growth of faults, J. Struct. Geol. 24, 1669–1675.

  • Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A., and Bonson, C.G. (2003), Formation of segmented normal faults: a 3-D perspective, J. Struct. Geol. 25, 1251–1262.

  • Watters, T.R., R.A. Schultz, M.S. Robinson, and Cook, A.C. (2002), The mechanical and thermal structure of Mercury´s early lithosphere, Geophys. Res. Lett. 29. doi:10.1029/2001GL014308.

  • Watterson, J. (1986), Fault dimensions, displacements and growth, Pure Appl. Geophys.124, 365–373.

  • Wells, D.L., and Coppersmith, K.J. (1994), New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am. 84, 974–1002.

  • Wilkins, S.J., and Gross, M.R. (2002), Normal fault growth in layered rocks at Split Mountain, Utah: influence of mechanical stratigraphy on dip linkage, fault restriction and fault scaling, J. Struct. Geol. 24, 1413–1429.

  • Willemse, E.J., Pollard, D.D., and Aydin, A. (1996), Three-dimensional analyses of slip distributions on normal fault arrays with consequences for fault scaling, J. Struct. Geol. 18, 295–309.

  • Willemse, E.J.M. (1997), Segmented normal faults: correspondence between three dimensional mechanical models and field data, J. Geophys. Res. 102, 675–692.

  • Wojtal, S. F. (1994), Fault scaling laws and temporal evolution of fault systems, J. Struct. Geol. 16, 603–612.

  • Xie, H., Fractals in Rock Mechanics (Rotterdam: Balkema, The Netherlands 1993).

  • Xu, S.-S., Velasquillo-Martinez, L.G., Grajales-Nishimura, J.M., Murillo-Muñetón, G., García-Hernández, J. and Nieto-Samaniego, A.F. (2004), Determination of fault slip components using subsurface structural contours: methods and examples, J. Petrol. Geol. 27, 277–298.

  • Xu, S.-S., Nieto-Samaniego, A.F., Alaniz-Álvarez, S.A., and Velasquillo-Martinez, L.G. (2006), Effect of sampling and linkage on fault length and length-displacement relationship, Int. J. Earth. Sci. 95, 841–852.

  • Xu, S.-S., Velasquillo-Martinez, L.G., Grajales-Nishimura, J.M., Murillo-Muñetón, G., and Nieto-Samaniego, A.F. (2007), Methods for quantitatively determining fault displacement using fault separation, J. Struct. Geol. 29, 1709–1720.

  • Xu, S.-S., Nieto-Samaniego, A.F., Alaniz-Álvarez, S.A., Velasquillo-Martínez, L.G., Grajales-Nishimura, J.M., Murillo-Muñetón, G. (2010), Changes in fault length population due to fault linkage, J. Geodyn. 49, 24–30.

  • Xu, S.-S., Nieto-Samaniego, A.F, Velasquillo-Martínez, L.G., Grajales-Nishimura, J.M., Murillo-Muñetón, G., and Garcia-Hernandez, J. (2011), Factors influencing the fault displacement-length relationship: an example from the Cantarell oilfield, Gulf of Mexico, Geofisc. Int. 50(3), 279–293.

  • Xu, S.-S., Nieto-Samaniego, A.F., Alaniz-Álvarez, S.A. (2014), Estimation of average to maximum displacement ratio by using fault displacement-distance profiles, Tectonophysics 636, 190–200.

Download references

Acknowledgments

This work was supported by the PAPIIT Project IN107610, the Conacyt projects 08967 and 80142, and the Sener-Conacyt Project (No. 143935). The helpful comments from an anonymous reviewer are appreciated. Also, the authors thank A. Gudmundsson for his comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunshan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Nieto-Samaniego, A.F., Murillo-Muñetón, G. et al. Effects of Physical Processes and Sampling Resolution on Fault Displacement Versus Length Scaling: The Case of the Cantarell Complex Oilfield, Gulf of Mexico. Pure Appl. Geophys. 173, 1125–1142 (2016). https://doi.org/10.1007/s00024-015-1172-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1172-0

Keywords

Navigation