Skip to main content
Log in

Estimation of Seismic and Aseismic Deformation in Mexicali Valley, Baja California, Mexico, in the 2006–2009 Period, Using Precise Leveling, DInSAR, Geotechnical Instruments Data, and Modeling

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Ground deformation and seismicity in Mexicali Valley, Baja California, Mexico, the southern part of the Mexicali-Imperial valley, are influenced by active tectonics and human activity. In this study, data from two successive leveling surveys in 2006 and 2009/2010 are used to estimate the total deformation occurred in Mexicali Valley during 2006–2009. The leveling data span more than 3.5 years and include deformation from several natural and anthropogenic sources that acted at different temporal and spatial scales during the analyzed period. Because of its large magnitude, the aseismic anthropogenic deformation caused by fluid extraction in the Cerro Prieto geothermal field obscures the deformation caused by other mechanisms and sources. The method of differential interferograms stacking was used to estimate the aseismic (interseismic tectonic and anthropogenic) components of the observed displacement, using SAR images, taken in 2007 during a period when no significant seismicity occurred in the study area. After removing the estimated aseismic signal from the leveling data, residual vertical displacement remained, and to identify possible sources and mechanisms of this displacement, a detailed analysis of records from tiltmeters and creepmeters was performed. The results of this analysis suggest that the residual displacement is mainly caused by moderate-sized seismicity in the area of study. Modeling of the vertical ground deformation caused by the coseismic slip on source fault (primary mechanism) of the two most important earthquakes, May 24, 2006 (Mw = 5.4) and December 30, 2009 (Mw = 5.8), was performed. The modeling results, together with the analysis of geotechnical instruments data, suggests that this moderate-sized seismicity influences the deformation in the study area by coseismic slip on the source fault, triggered slip on secondary faults, and soft sediments deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. All contour maps: Fig. 3, Fig. 5c, Figs. 6a, b, Fig. 9a–c, were obtained using grids generated by the procedure described above.

  2. Hereafter, “X” in the instruments name means that the east–west tilt component is analyzed, “Y” means the north–south tilt component, and “V” indicates that the instrument is a creepmeter that records the vertical component of ground displacement.

References

  • Amelung, F., Jonsson, S., Zebker, H., and Segall, P. (2000), Widespread uplift and ‘trapdoor’ faulting on Galapagos volcanoes observed with radar interferometry, Nature (407), 993–996.

  • Bennett, R. A., Rodi, W., and Reilinger, R. E. (1996), Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico. J. Geophys. Res. 101 (B10), 21943–21960.

  • Bilham, R., and Behr, J. (1992), A 2-layer model for aseismic slip on the Superstition Hills fault, California, Bull. Seismol. Soc. Am. 82, 1223–1235.

  • Brodksy, E., and LaJoie, L.J. (2013), Anthropogenic Seismicity Rates and Operational Parameters at the Salton Sea Geothermal Field, Science 341(6145), 543–546, doi:10.1126/science.1239213.

  • Bürgmann, R., Rosen, P. A., and Fielding, E. J. (2000), Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation, Annu. Rev. Earth Planet. Sci. 28 (1), 169–209.

  • Camacho Ibarra, E. (2006), Análisis de la deformación vertical del terreno en la región de confluencia del sistema de fallas Cerro Prieto-Imperial en el periodo 1962–2001, M.Sc. Thesis, Department of Geophysics, CICESE, Ensenada, B.C., Mexico, 135 pp.

  • Carnec, C., and Fabriol, H. (1999), Monitoring and modeling land subsidence at the Cerro Prieto geothermal field, Baja California, Mexico, using SAR interferometry, Geophys. Res. Lett. 26(9), 1211–1214.

  • Carnec, C., and Delacourt, C. (2000), Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France, J. Appl. Geophys. 43(1), 43–54.

  • CFE (2010) Cerro Prieto Geothermal Field. CFE, Residencia General de Cerro Prieto, 46 pp.

  • Costantini, M. (1998), A novel phase unwrapping method based on network programming, IEEE Trans. Geosci. Remote Sens. 36(3), 813–821.

  • Costantini, M., Farina, A., and Zirilli, F. (1999), A fast phase unwrapping algorithm for SAR interferometry, IEEE Trans. Geosci. Remote Sens. 37(1), 452–460.

  • Cressie, N. (1990), The origins of Krigin, Math. Geol. 22(3), 239–252.

  • Christiansen, L. B., Hurwitz, S., and Ingebritsen, S.E. (2007), Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA, Geophys. Res. Lett. 34, L04306, doi:10.1029/2006GL028634.

  • Darby, D., González, J., and Lesage, P. (1984), Geodetic studies in Baja California, Mexico, and the evaluation of short-range data from 1974 to 1982, J. Geophys. Res. 89(B4), 2478–2490.

  • Darby, D., Nyland, E., Suárez-Vidal, F., Chavez, D., and González, J. (1981), Strain and displacement measurements for the June 9, 1980 Victoria, Mexico, Earthquake, Geophys. Res. Lett. 8(6), 549–551.

  • Dawson, J., and Tregoning, P. (2007), Uncertainty analysis of earthquake source parameters determined from InSAR, A simulation study, J. Geophys. Res. 112, B09406, doi:10.1029/2007JB005209.

  • Dawson, J., Cummins, P., Tregoning, P., and Leonard, M. (2008), Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar, J. Geophys.Res. 113, B11408, doi:10.1029/2008JB005807.

  • de la Peña, L. A. (1981), Results from the first order leveling surveys carried out in the Mexicali Valley and at the Cerro Prieto field, Baja California. In: Proceedings of the Third Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, Lawrence Berkeley Laboratory, Berkeley, California, pp.281–291.

  • Earle, P. S., and Cogbill, A. H. (2002), Potential of InSAR for routine earthquake analysis. ftp://hazards.cr.usgs.gov/Earle/Papers/InSAR_routine.pdf.

  • Eberhart-Phillips, D., and D. H. Oppenheimer (1984), Induced seismicity in The Geysers GeothermalArea, California. J.Geophys. Res., 89, 1191–1207

  • Elders, W. A., Bird, D. K., Williams, A. E., and Schiffman, P. (1984), Hydrothermal-flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico, Geothermics, 13, 27–47.

  • Fabriol, H., and Glowacka, E. (1997), Seismicity and Fluid Reinjection at Cerro Prieto Geothermal Field: Preliminary Results. In: Proceedings of 22nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 11–17.

  • Fabriol, H., and Munguía, L. (1997), Seismic Activity at the Cerro Prieto Geothermal Area (Mexico) from August 1994 to December 1995, and Relationship with Tectonics and Fluid Exploitation, Geophys. Res. Lett. 24(14), 1807–1810.

  • Fialko, Y., Simons, M. (2000), Deformation and seismicity in the Coso geothermal area, Inyo Country, California: Observation and modeling using satellite radar interferometry, J. Geophys. Res. 195(B9), 21781–21793.

  • Fialko, Y., and Simons, M. (2001), Evidence for on-going inflation of the Socorro magma body, New Mexico, from interferometric synthetic aperture radar imaging, Geophys. Res. Lett. 28, 3549–3552.

  • Frez, J., and González, J. J. (1991), Crustal structure and seismotectonics of northern Baja California. In: Dauphin J. P. and Simoneit B. R. T. (eds.) The Gulf and Peninsular Province of the Californias. American Association of Petroleum Geologists, 261–283.

  • Gabriel, A. G., Goldstein, R. M., and Zebker, H. A. (1989), Mapping small elevation changes over large areas: Differential radar interferometry, J. Geophys. Res. 94, 9183–9191.

  • García, J. R. (1978), Estudios de nivelación de primer orden en Cerro Prieto. In: Proceedings of the First Symposium on the Cerro Prieto Geothermal Field, Baja California, México, pp.148–150.

  • Gens, R., and van Genderen, J. L. (1996), SAR interferometry, issues, techniques, applications, Int. J.Remote Sens. 17(10), 1803–1835.

  • Glowacka, E., and Nava, F. A. (1996), Major earthquake in Mexicali Valley, Mexico, and Fluid Extraction at Cerro Prieto Geothermal Field, Bull. Seismol. Soc. Am. 86, 93–105.

  • Glowacka, E., González, J., and Fabriol, H. (1999), Recent vertical deformation in Mexicali Valley and its relationship with tectonics, seismicity, and the exploitation of the Cerro Prieto geothermal field, Mexico, Pure Appl. Geophys. 156(4), 591–614.

  • Glowacka, E., Nava, F. A., de Cossio, G. D., Wong, V., and Farfan, F. (2002), Fault slip, seismicity, and deformation in Mexicali Valley, Baja California, Mexico, after the M 7.1 1999 Hector Mine earthquake, Bull. Seismol. Soc. Am., 92(4), 1290–1299.

  • Glowacka, E., Sarychikhina, O., and Nava, F. A. (2005), Subsidence and stress change in the Cerro Prieto Geothermal Field, B.C., Mexico, Pure Appl. Geophys. 162, 2095–2110.

  • Glowacka, E., Sarychikhina, O., Suárez, F., Mendoza, R., and Nava, F.A. (2006), Estudio geológico para definir la zona de hundimiento con el fin de relocalización del canal Nuevo Delta en el Valle de Mexicali, Informe Técnico, CICESE, México, 505 pp.

  • Glowacka, E., Sarychikhina, O., Suárez, F., Nava, F. A, Farfan, F., De Cossio Batani, G. D., and Garcia Arthur, M. A. (2010a), Anthropogenic subsidence in the Mexicali Valley, B.C., Mexico, caused by the fluid extraction in the Cerro Prieto geothermal Field and the role of faults. In: Proceedings of the World Geothermal Congress (WGC) 2010, Bali, Indonesia, CD.

  • Glowacka, E., Sarychikhina, O., Nava, F. A., Suarez, F., Ramírez, J., Guzman, M., Robles, B., Farfan, F., and De Cossio Batani, G. D. (2010b), Continuous monitoring techniques of fault displacement caused by geothermal fluid extraction in the Cerro Prieto Geothermal Field (Baja California, Mexico). In: Correón-Freyre D., Cerca M. and Galowey D. (eds.) Land Subsidence, Associated Hazards and the Role of Natural Resources. IAHS Publ., 339, pp.326–332.

  • Glowacka, E., Sarychikhina, O., Suárez, F., Nava F. A., and Mellors, R. (2010c), Anthropogenic subsidence in Mexicali Valley, Baja California, Mexico, and slip on the Saltillo fault. Environ. Earth Sci. 59(7), 1515–1524.

  • Glowacka, E., Sarychikhina, O., Robles, B., Suárez, F., Ramírez, J., and Nava, F. A. (2012), Estudio geológico para definir la línea de hundimiento cero y monitorear la subsidencia de los módulos 10, 11 y 12 en el Valle de Mexicali, en el distrito de riego 014, Rio Colorado, B.C. Reporte Técnico Final, Convenio con CONAGUA, CICESE, Mexico, 560 pp.

  • Glowacka, E., Sarychikhina, O., Márquez Ramírez, V.H., Nava Pichardo, F.A., Garcia Arthur, M.A., Farfan Sanchez, F.J., and Orozco Leon, L.R. (2013), Seismicity, deformation and fluid extraction in the Cerro Prieto Geothermal field during 1973–2009. In: 2013 Annual Meeting of the Seismological Society of America (SSA), Salt Lake City, Utah, Seismol. Res. Lett. 84(2), 384.

  • Goldstein, R. M., and Werner, C. L. (1998), Radar interferogram filtering for geophysical applications, Geophys. Res. Lett. 25(21), 4035–4038.

  • González-Ortega, A., Fialko, Y., Sandwell, D., Nava Pichardo, F.A., Fletcher, J., González-García, J., Lipovsky, B., Floyd, M., and Funning, G. (2014), El Mayor-Cucapah (Mw 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations, J. Geophys. Res., B 119(2), 1482–1497.

  • González, J., Glowacka, E., Suárez, F., Quiñones, J.G., Guzmán, M., Castro, J.M., Rivera, F., and Félix, M.G. (1998), Movimiento reciente de la Falla Imperial, Mexicali, B. C, Ciencia para todos Divulgare, Universidad Autónoma de Baja California, 6(22), 4–15.

  • González, M. (1999), Actualización del modelo del basamento en el campo geotérmico de Cerro Prieto, BC, México, Geotermia 15(1), 19–23.

  • González, P.J., Tiampo, K.F., Palano, M., Cannavó, F., and Fernández, J. (2012), The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading, Nat. Geosci. 5, 821–825.

  • Grannell, R. B., Tarnman, D. W., Clover, R. C., Leggewie, R. M., Aronstam, P. S., Kroll, R. C., and Eppink, J. (1979), Precision gravity studies at Cerro Prieto. In: Proceedings of the Second Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, Lawrence Berkeley Laboratory, Berkeley, California, pp. 329–331.

  • Hanssen, R.F. (2001) Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 328 pp.

  • Harris, R. A. (1998), Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res. 103(B10), 24347–24358.

  • Lippmann, M. J., Goldstein, N. E., Halfman, S. E., Witherspoon, P. A. (1984), Exploration and development of the Cerro Prieto geothermal field, J. Petrol. Tech. 36(9), 1579–1591.

  • Lippmann, M.J., Truesdell, A.H., Mañón, A.M. and Halfman, S.E. (1991), A review of the hydrogeologic-geochemical model for Cerro Prieto, Geothermics, 20, 39–52.

  • Lira, H. (1996), Resultados del monitoreo de desplazamiento de la falla Cerro Prieto en 1996. Informe Técnico RE 21/96, Comisión Federal de Electricidad, Residencia de Estudios, México.

  • Lira, H. (1999a), Resultados de la nivelación de precisión realizada con GPS, en 1998, en el campo geotérmico de Cerro Prieto. Informe Técnico RE 16/98, Comisión Federal de Electricidad, Residencia de Estudios, México, 30 pp.

  • Lira, H. (1999b), Monitoreo de la Subsidencia en el Campo Geotérmico de Cerro Prieto, B.C., México, Geotermia, Revista Mexicana de Geoenergia 15(1), 31–38.

  • Lira, H. (1999c) Resultados del monitoreo de desplazamiento de la falla Cerro Prieto en 1998. Informe Técnico RE05/99. Comisión Federal de Electricidad, Residencia de Estudios. México, 6 pp.

  • Lira, H. (2005) Actualización del modelo geológico conceptual del yacimiento Geotérmico de Cerro Prieto, Geotermia, Revista Mexicana de Geoenergia 18(1), 37–46.

  • Lira, H. (2006), Características del sismo del 23 de Mayo de 2006, Informe RE-023/2006, Comisión Federal de Electricidad, Residencia de Estudios, México.

  • Lira, H., and Arellano, J. F. (1997), Resultados de la nivelación de precisión realizada en 1997, en el campo geotérmico Cerro Prieto. Informe Técnico RE 07/97, Comisión Federal de Electricidad, Residencia de Estudios, México, 25 pp.

  • Lohman, R. B., and Simons M. (2005), Locations of selected small earthquakes in the Zagros Mountains, Geochem. Geophys. Geosyst. 6, Q03001, doi:10.1029/2004GC000849.

  • Lomnitz, C., Mooser, F., Allen, C. R., Brune, J. N., and Thatcher, W. (1970), Seismicity and tectonics of the northern Gulf of California, Mexico: preliminary results, Geofisica Internacional 10, 37–48.

  • Majer, E. L., and McEvilly, T.V. (1982), Seismological Studies at the Cerro Prieto Geothermal Field, 1978–1982, In: Proceedings of the Fourth Symp. on the Cerro Prieto Geothermal Field, Baja California, Mexico, Comisión Federal de Electricidad, 145–151.

  • Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., and Asanuma, H. (2007), Induced Seismicity Associated with Enhanced Geothermal Systems, Geothermics, 36, 185–222.

  • Massonnet, D., and Rabaute, T. (1993), Radar interferometry, limits and potential, IEEE Trans. Geosci. Remote Sens. 31(2), 455–464.

  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T. (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature 364, 138–142.

  • Massonnet, D., Briole, P., and Arnaud, A. (1995), Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567–570.

  • Massonnet, D., Holzer, T.L., Vadon, H., 1997, Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry: Geophys. Res. Lett., 24 (8), 901–904.

  • Massonnet, D., and Feigl, K. L. (1998), Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys. 36(4), 441–500.

  • McGarr, A., Simpson, D., and Seeber, L. (2002), Case histories of induced and triggered seismicity, In: International Handbook of Earthquake and Engineering Seismology 2002, 81A, 647–661.

  • Mellors, R. J., Magistrale, H., Earle, P., and Cogbill, A. (2004), Comparison of four moderate-size earthquakes in southern California using seismology and InSAR, Bull. Seismol. Soc. Am. 94, 2004–2014.

  • Mossop, A., and Segall, P. (1997), Subsidence at The Geysers geothermal field, N. California from a comparison of GPS and leveling surveys, Geophys. Res. Lett. 24 (14), 1839–1842.

  • Munguía, L., Glowacka, E., Suárez-Vidal, F., Lira-Herrera, H., and Sarychikhina, O. (2009), Near-Fault Strong Ground Motions Recorded during the Morelia Normal-Fault Earthquakes of May 2006 in Mexicali Valley, BC, Mexico, Bull. Seismol. Soc. Am. 99 (3), 1538–1551.

  • Nava, F. A., and Glowacka, E. (1999), Fault slip triggering, healing, and viscoelastic after working in sediments in the Mexicali-Imperial Valley, Pure Appl. Geophys. 156, 615–629.

  • Pennington, W. D., and Davis, S.D. (1986), The evaluation of seismic barriers and asperities caused by the depressuring of fault planes in oil and gas fields of South Texas, Bull. Seism. Soc. Am. 76, 923–948.

  • Raucoules, D., Maisons, C., Carnec, C., Le Mouelic, S., King, C., and Hosford, S. (2003), Monitoring of slow ground deformation by ERS radar interferometry on the Vayvert Salt Mine (France). Comparison with ground based measurements, Remote Sens. Environ. 88 (4), 468–478.

  • Rebollar, C. J., Reyes, L. M.., Quintanar, L., and Arellano, J. F. (2003), Stress Heterogeneity in the Cerro Prieto Geothermal Field, Baja California, Mexico, Bull. Seismol. Soc. Am. 93, 783–794.

  • Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., and Goldstein, R. M. (2000), Synthetic aperture radar interferometry. In: Proceedings of the IEEE, 88, pp.333–382.

  • Sarychikhina, O. (2003) Modelación de subsidencia en el campo geotérmico Cerro Prieto. MSc. Thesis, CICESE, México, 101 pp.

  • Sarychikhina, O., Glowacka, E., Mellors, R., Vázquez, R., Munguía, L., and Guzmán M. (2009), Surface Displacement and Groundwater Level Changes Associated with the 24 May 2006 Mw 5.4 Morelia Fault Earthquake, Mexicali Valley, Baja California, Mexico, Bull. Seismol. Soc. Am. 99(4), 2180–2189.

  • Sarychikhina, O., Glowacka, E., Mellors, R., and Suárez-Vidal, F. (2011), Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, leveling and geological data, J. Volcanol. Geoth. Res. 204, 76–90.

  • Sarychikhina, O., Glowacka, E., Suarez, F., and Hinojosa, A. (2012), Analysis of ground deformation related to moderate-size earthquakes using InSAR; application for the seismicity in the Mexicali Valley, Baja California, Mexico. Book of abstracts 33rd General Assembly of the European Seismological Commission (GA ESC 2012), 19-24 August 2012, Moscow, 126–127.

  • Segall, P. (1989), Earthquakes triggered by fluid extraction, Geology 17, 942–946.

  • Segall, P. (1992), Induced stresses due to fluid extraction from axisymmetric reservoirs, Pure Appl. Geophys 139, 535–560.

  • Stramondo, S, Moro, M, Tolomei, C, Cinti, F.R., and Doumaz F. (2005), InSAR surface displacement field and fault modelling for the 2003 Bam earthquake (southeastern Iran), J. Geodyn. 40, 347–353.

  • Suárez-Vidal, F., Munguía-Orozco, L., González-Escobar, M., González-García, J., and Glowacka, E. (2007), Surface rupture of the Morelia fault near the Cerro Prieto Geothermal Field, Mexicali, Baja California, Mexico, during the Mw 5.4 earthquake of 24 May 2006, Seismol. Res. Lett. 78(3), 394–399.

  • Suárez-Vidal, F., Mendoza-Borunda, R., Nafarrete-Zamarripa, L., Rámirez, J., and Glowacka, E. (2008), Shape and dimensions of the Cerro Prieto pull-apart basin, Mexicali, Baja California, México, based on the regional seismic record and surface structures, Int. Geol. Rev. 50(7), 636–649.

  • Urban, E., and Lermo, J.F. (2012), Relationship Of Local Seismic Activity, Injection Wells And Active Faults In The Geothermal Fields Of Mexico, In: Proceedings of Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, SGP-TR-194

  • Velasco, J. (1963), Levantamiento Gravimétrico, Zona Geotérmica de Mexicali, Baja California, Consejo de Recursos Naturales no Renovables, 55 pp.

  • Wegmüller U., and Werner C. L. (1997) Gamma SAR processor and interferometry software. In: Proceedings of the 3rd ERS Symposium, Eur. Space Agency Spec. Publ., ESA SP-414, pp. 1686–1692.

  • Wei, M., Sandwell, D., and Fialko, Y. (2009), A silent Mw 4.7 slip event of October 2006 on the Superstition Hills fault, southern California, J. Geophys. Res., 114, B07402. doi:10.1029/2008JB006135.

  • Wei, M., Kaneko, J., Liu Y., and McGuire, J. J. (2013), Episodic fault creep events in California controlled by shallow frictional heterogeneity, Nature Geoscience 6, 566–570. doi:10.1038/ngeo1835.

  • Wells, D. L., and Coppersmith, K. J. (1994), New Empirical Relationship among Magnitude, Rupture Width, Rupture Area, and Surface Displacement, Bull. Seism. Soc. Am., 84(4), 974–1002.

  • Wyman, R.M. (1983), Potential Modeling of Gravity and Leveling Data over Cerro Prieto Geothermal Field. M.Sc. Thesis, California State University, Long Beach, CA, USA, 79 pp.

  • Zandbergen, R., Otten, M., Righetti, P.L., Kuijper, D., and Dow, J.M. (2003), Routine operational and high-precision orbit determination of Envisat, Adv. Space Res. 31, 1953–1958.

  • Zebker, H.A., and Villasenor, J. (1992), Decorrelation in Interferometric Radar Echoes, IEEE Trans. on Geoscience and Remote Sensing 30(5), 950–959.

  • Zhou, X., Chang, N.-B., and Li, S. (2009), Applications of SAR Interferometry in Earth and Environmental Science Research, Sensors 9, 1876–1912. doi:10.3390/s90301876.

Download references

Acknowledgments

Images from the European Space Agency’s Envisat satellite were used to generate the interferometric data. The data were obtained as part of the ESA Cat-1 Project (ID—C1P3508).

This research was sponsored in part by CONACYT project number 105907-F, CONAGUA agreement GRPBC-CICESE-01, 2005 and 2009, and CICESE internal funds. The authors gratefully acknowledge the contributions of Carlos Iván Hernández Gutiérrez (UAS) who participated in the preliminary part of this study thanks to a “Programa Delfín” summer scholarship. E.G is grateful to Dr O. Lazaro-Mancilla for his aid during the fieldwork after the December 30, 2009 earthquake.

The authors thank the two anonymous reviewers for their constructive comments and valuable suggestions that allowed us to improve and clarify the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Sarychikhina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

24_2015_1067_MOESM1_ESM.tif

Supplementary material 1 (TIFF 7906 kb) Figure E1: Geocoded differential wrapped interferograms from Envisat ASAR ascending pass used in stacking (Fig. 5a). The number corresponds to the interferometric pair number in Table 2. Areas of low coherence (<0.5 on the filtered differential interferogram) are masked. One color cycle corresponds to 2.8 cm of displacements in the line-of-sight (LOS) direction. The borders of the evaporation pond, the CPGF limits, and the Cerro Prieto volcano (CPV) (gray lines) are superposed on the differential interferograms for reference. Faults notation as in Fig. 2

24_2015_1067_MOESM2_ESM.tif

Supplementary material 2 (TIFF 3290 kb) Figure E2: Geocoded differential wrapped interferograms from Envisat ASAR descending pass used in stacking (Fig. 5b). The number corresponds to the interferometric pair number in Table 2. Areas of low coherence (<0.5 on the filtered differential interferogram) are masked. One color cycle corresponds to 2.8 cm of displacements in the line-of-sight (LOS) direction. The borders of the evaporation pond, the CPGF limits, and the Cerro Prieto volcano (CPV) (gray lines) are superposed on the differential interferograms for reference. Faults notation as in Fig. 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarychikhina, O., Glowacka, E., Robles, B. et al. Estimation of Seismic and Aseismic Deformation in Mexicali Valley, Baja California, Mexico, in the 2006–2009 Period, Using Precise Leveling, DInSAR, Geotechnical Instruments Data, and Modeling. Pure Appl. Geophys. 172, 3139–3162 (2015). https://doi.org/10.1007/s00024-015-1067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1067-0

Keywords

Navigation