Skip to main content
Log in

Added-Value of 3DVAR Data Assimilation in the Simulation of Heavy Rainfall Events Over West and Central Africa

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the ability of a numerical weather prediction (NWP) model to capture the spatial distribution and magnitude of rainfall during three recent intense events (15–17 June 2011, and 23–25 August and 04–06 September 2012) observed over West and Central Africa, as well as the associated atmospheric and near-surface conditions. For each event, two numerical experiments were performed using the regional Weather Research and Forecasting (WRF) Model without (CNTL) and with (DA) data assimilation. Simulations were initialized using Global Forecast System data. The analyses were updated with the three-dimensional variational (3DVAR) technique using PrepBUFR and radiance observational data in a time window of ±3 h. The potential added value of data assimilation was addressed by comparing meteorological variables such as relative humidity, zonal and meridional wind components, 2 m temperature, and rainfall with the European Centre for Medium-Range Weather Forecasts reanalysis and the Tropical Rainfall Measuring Mission satellite-derived rainfall product datasets. WRF accurately simulated the spatiotemporal propagation and the zonally extended structure of rainfall as well as of relative humidity, 2 m temperature, and horizontal wind components. DA exhibited different biases, root mean square error, and spatial correlation, leading to mixed results in terms of outperforming CNTL. Results indicated that there was an increment in control variables, implying an added value from 3DVAR to the initial and boundary conditions. Rainfall forecasts were improved by 15–25 %. Uncertainties in the simulation of intense events in the study domain were noted, but improvement resulting from DA was limited due to lack of assimilated data for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Barker d. M., Huang w., Guo y-r., Bourgeois a. J., and Xiao q. N. (2004), A three-dimensional variational data assimilation system for MM5: implementation and initial results. Mon. Wea. Rew. 132, 897–914.

  • Boutier F., and Courtier P. (1999), Data assimilation concepts and methods. Training course note, available from http://www.ecmwf.int/newenevts/training.

  • Carbone R. E., Tuttle J. D., Ahijevych D. A., and Trier S. B. (2002), Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci. 129, 569–585.

  • Cretat J., Pohl B., Richard Y., and Drobinski P. (2012), Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim. Dyn. 38, 613–634.

  • Cretat J., Vizy Edward K., and Cook Kerry H. (2013), How well are daily intense rainfall events captured by current climate models over Africa? Clim. Dyn. doi:10.1007/s00382-013-1796-7.

  • Daley R. (1991), Atmospheric data analysis. Cambridge atmospheric and space science series. Cambridge University Press, 457 pp.

  • Dee d. P., Uppala s. M., Simmons a. J., Berrisford p., Poli p., Kobayashi s., Andrae u., Balmaseda m. A., Balsamo g., Bauer p., Bechtold p., Beljaars a. C. M., van de Berg l., Bidlot j., Bormann n., Delsol c., Dragani r., Fuentes m., Geer a. J., Haimberger l., Healy s. B., Hersbach h., Holm e. V., Isaksen l., Kallberg p., Kohler m., Matricardi m., Mcnally a. P., Monge-sanz b. M., Morcrette j.-j., Park b. -k., Peubey c., de Rosnay p., Tavolato c., Thepaut j.-n., and Vitart f. (2011), The Era-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137, 553–597.

  • Dong-Kyou L., Dae-Yong E., Joo-Wan K., and Jae-Bok L. (2010), High-resolution summer rainfall prediction in the JHWC Real-Time system. Asia-Pacific J. Atmos. Sci. 46 (3), 341–353.

  • Druyan L., Fulakeza M., and Lonergan P. (2008), The impact of vertical resolution on regional model simulation of the West African summer monsoon. Int. J. Clim. 28, 1293–1314.

  • Fink A. H., Agusti-Panareda A., Parker J. D., Lafore J.-P., Ngamini J.-B., Afiesimama E., Beljaars A., Bock O., Christoph M., Dide F., Faccani C., FOURRIE N., Karbou F., Polcher J., Mumba Z., Nuret M., Pohle S., Rabier F., Tompkins A. M., and Wilson G. (2011), Operational meteorology in West Africa: observational networks, weather analysis and forecasting. Atmos. Sci. Let. 12, 135–141.

  • Flaounas E., Bastin S., and Janicot S. (2010), Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterization using WRF. Clim. Dyn. 363, 1083–1105.

  • Grell G., DUDHIA J., and Stauffer D. (1994), A description of the fifth-generation penn state/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, 138.

  • Hollingsworth A., Shaw D., Lonnberg P., Illari L., Arpe K., and Simmons A. (1986), Monitoring of observation and analysis quality by a data assimilation system. Mon. Wea. Rev. 114, 861–879.

  • Huang X. Y., Xiao Q., Barker D. M., Zhang X., Michalakes J., Huang W., Henderson T., Bray J., Chen Y., Ma Z., Dudhia J., Guo Y., Zhang X., Won D.-J., LIN H.-C., and Kuo Y.-H. (2009), Four dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev. 137, 299–314.

  • Huffman G. J., Adler R. F., Bolvin D. T., Gu G., Nelkin E. J., Bowman K. P., Hong Y., Stocker E. F., and Wolf D. B.(2007), The TRMM Multisatellite Precipitation Analysis (TPMA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor. 08, 38–55.

  • Ide K., Courtier P., Ghil M., and Lorenc A. C. (1997), Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan. 75, 181–189.

  • Janicot S. (1992), Spatio-temporal variability of West African rainfall. Part I: regionalization and typing. J. Climate 05, 489–497.

  • Jianfeng G. U., Qingnong X., Kuo Y.-H., Barker D. M., Jishan X., and Xiaoxing M. A. (2005), Assimilation and simulation of typhoon Rusa (2002) using WRF system. Adv. in Atm. Sc. 22(3), 415–427.

  • Kalnay E. (2003), Atmospheric modelling, data assimilation and predictability. Cambridge University Press, 364 pp.

  • Kistler R., collins W., Saha S., White G., Woollen J., Kalnay E., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., van den Dool H., Roy J., and Fiorino M. (2001), The NCEP-NCAR 50-year re-analysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc. 82, 247–267.

  • Kumar V., Chandrasekar A., Alapaty K., and Niyogi, D. (2008), The impacts of indirect soil moisture assimilation and direct surface temperature and humidity assimilation on a mesoscale model simulation of an Indian monsoon depression. J. Appl. Meteorol. Climatol. 47, 1393–1412.

  • lenouo A. and Kamga F. M. (2008), Sensitivity of African easterly waves to boundary layer conditions. Ann. Geophys. 26, 1355–1363.

  • Lorenc A. C. (1986), Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc. 112, 1177–1194.

  • Lorenc A. C., Ballard S. P., Bell R. S., Ingleby N. B., Andrews P. L. F., Barker D. M., Bray J. R., Clayton A. M., Dalby T., LI D., Payne T. J., and Saunders F. W. (2000), The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc. 126, 2991–3012.

  • Mohanthy U. C., Routray A., Osuri K. K., and Prasad S. K. (2012), A study on simulation of heavy rainfall events over Indian region with ARW-3DVAR modeling system. Pure Appl. Geophys. 169, 381–399.

  • Nicholson S. E., Some B., Mccollum J., Nelkin E., Klotter D., Berte Y., Diallo B. M., Gaye I., Kpabeba G., Ndiaye O., Noukpozounkou J. N., Tanu M. M., THIAM A., Toure A. A., and Traore A. K. (2003), Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor. 42, 1355–1368.

  • Panda J., and Giri R. K. (2012), A comprehensive study of surface and upper air characteristics over two stations on the west coast of India during the occurrence of a cyclonic storm. Nat. Hazards 64, 1055–1078.

  • Panda J., Giri R. K., Patel K. H., Sharma A. K. and Sharma R. K. (2011), Impact of satellite derived winds and cumulus physics during the occurrence of the tropical cyclone Phyan. Ind. J. Sci. Tech. 04, 859–875.

  • Panda J., Sharan M., and Gopalakrishnan S. G. (2009), Study of regional-scale boundary layer characteristics over northern India with a special reference to the role of the Thar Desert in regional scale transport. J. Appl. Meteorol. Climatol. 48, 2377–2402.

  • Parrish D. F., and Derber J. C. (1992), The national meteorological center’s spectral statistical interpolation analysis system. Mon. Wea. Rew. 120, 1747–1763.

  • Pohl B., Cretat J., and Camberlin P. (2011), Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim. Dyn. 37, 1357–1379.

  • Routray A., Mohanthy U. C., Niyogi D., Rizvi S. R. H. and Osuri K. K. (2010), Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteorol. Atmos. Phys. 106, 107–125.

  • Skamarock W., Klemp J., Dudhia J., Grill D., Barker D., Wang W., and Powers J., (2008), A description of the advanced research WRF version 3. NCAR technical note 4751STR, 113 pp, available from http://www.ncar.ucar.edu.

  • Sylla M. B., Giorgi F., Coppola E., and Mariotti L. (2013), Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol. 33, 1805–1817.

  • Talagrand O. (2003), Bayesian estimation, optical interpolation, statistical linear estimation. Data Assimilation for the Earth System. ISBN 1-4020-1592-5, Edited by Richard Swinbank, Victor Shutyaev and William Albert Lahoz, Kluwer Academic Publishers, Netherlands, 21–35.

  • Tanessong R. S., Vondou D. A., Igri P. M., and Kamga F. M. (2012), Evaluation of Eta Weather Forecast Model over Central Africa. Atmos. and Clim. Sci. 02, 532–537.

  • Tanessong R. S., Igri M. P., Vondou D. A., Tamo P. H. K., and Kamga F. M. (2013), Evaluation of probabilistic precipitation forecast determined from WRF forecasted amounts. Theor. Appl. Climatol. doi:10.1007/s00704-013-0965-2.

  • Thiemig V., Pappenberger F., Thielen J., Gadain H., Roo A. de, Bodis K., Medico M. D., and Muthusi F. (2010), Ensemble flood forecasting in Africa: A feasibility study in the Juba-Shabelle river basin. Atmos. Sci. Let. 11, 123–131.

  • Wheatley D. M., Stensrud D. J., Dowell D. C., and Yussouf N. (2012), Application of a WRF mesoscale data assimilation system to springtime severe weather events 2007–09. Mon. Wea. Rev. 140, 1539–1557.

  • Zhang M., Zhang F., Huang X.-Y., and Zhang X. (2010), Intercomparison of an ensemble Kalmann filter with three and four dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Wea. Rev. 139, 566–572.

Download references

Acknowledgments

WRF (www.wrf-model.org) simulations were carried out on a workstation provided by Dr. Serge Janicot of LOCEAN (Paris) within the framework of the PICREVAT project, which was funded by the French government. The TRMM dataset used in this study was acquired online from NASA. ERA-I data set was obtained from http://dataportal.ecmwf.int/data/d/interim_daily and GFS data were downloaded from http://nomads.ncdc.noaa.gov/cgi-bin/ncdc-ui/ftp4u.pl. The authors would like to thank the editor and anonymous reviewers for acknowledging the significance of the work and providing several opportunities to revise the manuscript through their valuable comments and suggestions, which helped to improve the manuscript in every aspect.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moudi Igri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igri, P.M., Tanessong, R.S., Vondou, D.A. et al. Added-Value of 3DVAR Data Assimilation in the Simulation of Heavy Rainfall Events Over West and Central Africa. Pure Appl. Geophys. 172, 2751–2776 (2015). https://doi.org/10.1007/s00024-015-1052-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1052-7

Keywords

Navigation