Skip to main content
Log in

The Fluid Dynamics of Solid Mechanical Shear Zones

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Shear zones in outcrops and core drillings on active faults commonly reveal two scales of localization, with centimeter to tens of meters thick deformation zones embedding much narrower zones of mm-scale to cm-scale. The narrow zones are often attributed to some form of fast instability such as earthquakes or slow slip events. Surprisingly, the double localisation phenomenon seem to be independent of the mode of failure, as it is observed in brittle cataclastic fault zones as well as ductile mylonitic shear zones. In both, a very thin layer of chemically altered, ultra fine grained ultracataclasite or ultramylonite is noted. We present an extension to the classical solid mechanical theory where both length scales emerge as part of the same evolutionary process of shearing the host rock. We highlight the important role of any type of solid-fluid phase transitions that govern the second degree localisation process in the core of the shear zone. In both brittle and ductile shear zones, chemistry stops the localisation process caused by a multiphysics feedback loop leading to an unstable slip. The microstructural evolutionary processes govern the time-scale of the transition between slow background shear and fast, intermittent instabilities in the fault zone core. The fast cataclastic fragmentation processes are limiting the rates of forming the ultracataclasites in the brittle domain, while the slow dynamic recrystallisation prolongs the transition to ultramylonites into a slow slip instability in the ductile realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alevizos, S., Poulet, T., Veveakis, E.: Thermo-poro-mechanics of chemically active creeping faults. 1: Theory and steady state considerations. J. Geophys. Res. pp. In Press, 2014. doi:10.1002/2013JB010070.

  • Allam, A.A., Ben-Zion, Y.: Seismic velocity structures in the southern california plate-boundary environment from double-difference tomography. Geophys. J. Int. 190, 1181–1196 (2012). doi:10.1111/j.1365-246X.2012.05544.x.

  • Ben-Zion, Y., Sammis, C.G.: Characterization of fault zones. Pure Appl. Geophys. 160, 677–715 (2003).

  • Brantut, N., Han, R., Shimamoto, T., Findling, N., Schubnel, A.: Fast slip with inhibited temperature rise due to mineral dehydration: evidence from experiments on gypsum. Geology 39(1), 59–62 (2011).

  • Brantut, N., Schubnel, A., Corvisier, J., Sarout, J.: Thermochemical pressurization of faults during coseismic slip. J. Geophys Res. 115, B05,314 (2010).

  • Brantut, N., Sulem, J., Schubnel, J.: Effect of dehydration reactions on earthquake nucleation: Stable sliding, slow transients and unstable slip. J. Geophys Res. 116, B05,304 (2011). doi:10.1029/2010JB007876.

  • Cecinato, F., Zervos, A., Veveakis, E.: A thermo-mechanical model for the catastrophic collapse of large landslides. International Journal for Numerical and Analytical Methods in Geomechanics 35(14), 1507–1535 (2011). doi:10.1002/nag.963.

  • Chester, F., Chester, J.: Ultracataclasite structure and friction processes of the punchbowl fault, san andreas system, california. Tectonophysics pp. 199–221 (1998).

  • Chester, F.M., Evans, J.P., Biegel, R.L.: Internal structure and weakening mechanisms of the san andreas fault. Journal of Geophysical Research: Solid Earth 98(B1), 771–786 (1993). doi:10.1029/92JB01866..

  • Chrysochoos, A., Belmahjoub, F.: Thermographic analysis of thermomechanical couplings. Archives Mechanics 44(1), 55–68 (1992).

  • Colletini, C., Viti, C., Tesei, T., Mollo., S.: Thermal decomposition along natural carbonate faults duing earthquakes. Geology p. 2013, doi:10.1130/G34421.1.

  • Cornet, F., Doan, M., Moretti, I., Borm, G.: Drilling through the active aigion fault: the aig10 well observatory. Comptes Rendus Geosciences 336(4–5), 395–406 (2004).

  • Einav, I.: Breakage mechanics–part I: theory. Journal of the Mechanics and Physics of Solids 55(6), 1274–1297 (2007a). doi:10.1016/j.jmps.2006.11.003

  • Einav, I.: Breakage mechanics–part ii: Modelling granular materials. Journal of the Mechanics and Physics of Solids 55(6), 1298–1320 (2007b). doi:10.1016/j.jmps.2006.11.004

  • Famin, V., Nakashima, S., Boullier, A.M., Fujimoto, K., Hirono, T.: Earthquakes produce carbon dioxide in crustal faults. Earth. Plan. Sci. Let. 265, 487–497 (2008).

  • Faulkner, D.R., Lewis, A.C., Rutter, E.H.: On the internal structure and mechanics of large strike-slip fault zones: field observations of the carboneras fault in southeastern spain. Tectonophysics 367, 235–251 (2003). 1951, doi:10.1016/S0040-(03)00134-3.

  • Ferri, F., DiToro, G., Hirose, T., Shimamoto, T.: Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges. Terra Nova 22(5), 347–353 (2010). doi:10.1111/j.1365-3121.2010.00955.x.

  • Fowler, A. (ed.): Mathematical Models in the Applied Sciences, 2 edn. Cambridge University Press (1997).

  • Fujita, C.: On the non-linear equations \(du + e^u = 0\) and \(v_t = dv + e^v\). Bull. Am. Math. Soc. 75, 132–135, (1969).

  • Han, R., Shimamoto, T., Hirose, T., Ree, J., Ando, J.: Ultralow friction of carbonate faults caused by thermal decomposition. Science 316, 878–881 (2007).

  • Herwegh, M., Hurzeler, J., pfiffner, O., Schmid, S., Abart, R., Ebert, A.: The glarus thrust: excursion guide and report of a field trip of the swiss tectonic studies groups. Swiss Journal of Geosciences 101(2), 323–340 (2008).

  • Hill, R.: Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16 (1962).

  • Hirono, T., et al.: A chemical kinetic approach to estimate dynamic shear stress during the 1999 taiwan chi-chi earthquake. Geophys. Res. Lett. 34, L19,308 (2007). doi:10.1029/2007GL030743.

  • Holdsworth, R., van Diggelen, E., Spiers, C., de Bresser, J., Walker, R., Bowen, L.: Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the san andreas fault, California. Journal of Structural Geology 33(2), 132–144 (2011). doi:10.1016/j.jsg.2010.11.010

  • Kennedy, L., Logan, J.: The role of veining and dissolution in the evolution of fine -grained ylonites: the mcconnell thrust, Alberta. J. Struct. Geology 19(6), 785–797 (1997).

  • Lachenbruch, A.: Frictional heating, fluid pressure and the resistance to fault motion. J. Geophys. Res. 85, 6097–6112 (1980).

  • Lyakhovsky, V., Ben-Zion, Y.: A continuum damage-breakage faulting model accounting for solid-granular transitions. Pure Appl. Geophys. p. Submitted (2014a).

  • Lyakhovsky, V., Ben-Zion, Y.: Damage-breakage rheology model and solid-granular transition near brittle instability. J. Mech. Phys. Solids 64, 184–197 (2014b). doi:10.1016/j.jmps.2013.11.007..

  • Mandel, J.: Conditions de stabilite et postulate de drucker. Rheology and Soil Mechanics pp. 58–67 (1966).

  • Muhlhaus, H., Vardoulakis, I.: Thickness of shear bands in granular materials. Geotechnique 37(3), 271–283 (1987).

  • Noda, H., Shimamoto, T.: Thermal pressurization and slip-weakening distance of a fault: an example of the hanaore fault, southwest Japan. Bull. Seism. Soc. Am. 95(4) (2005).

  • Paola, N.D., Hirose, T., Mitchell, T., Toro, G.D., Togo, T., Shimamoto, T.: Fault lubrication and earthquake propagation in thermally unstable rocks. Geology 39(1), 35–38 (2011).

  • Papanicolopulos, S., Veveakis, E.: Sliding and rolling dissipation in cosserat plasticity. Granular Matter 13(3), 197–204 (2011).

  • Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966).

  • Regenauer-Lieb, K., Veveakis, M., Poulet, T., Wellmann, F., Karrech, A., Liu, J., Hauser, J., Schrank, C., Gaede, O., Trefry, M.: Multiscale coupling and multiphysics approaches in earth sciences: applications. Journal of Coupled Systems and Multiscale, Dynamics, 1(3), 2013, doi:10.1166/jcsmd.2013.1021.

  • Regenauer-Lieb, K., Veveakis, M., Poulet, T., Wellmann, F., Karrech, A., Liu, J., Hauser, J., Schrank, C., Gaede, O., Trefry, M.: Multiscale coupling and multiphysics approaches in earth sciences: theory. Journal of Coupled Systems and Multiscale Dynamics, 1(1), 49–73 (2013).

  • Regenauer-Lieb, K., Yuen, D., Fusseis, F.: Landslides, ice quakes, earthquakes: a thermodynamic approach to surface instabilities. Pure. Appl. Geophys, 166(10–11), 1885–1908 (2009).

  • Reiner, M.: The deborah number. Physics Today pp. 152–153 (1964).

  • Rice, J.R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. 111, B05311 (2006). doi:10.1029/2005JB004006.

  • Rosakis, P., Rosakis, A., Ravichandran, G., Hodowany, J.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000).

  • Rowe, C., Fagereng, A., Miller, J., Mapani, B.: Signature of coseismic decarbonation in dolomitic fault rocks of the naukluft thrust, Namibia. Earth Plan. Sci. Let. 333–334, 200–210 (2012).

  • Rudnicki, J.W., Rice, J.R.: Conditions for the localization of deformation in pressure sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975).

  • Sibson, R.: Interaction between temperature and pore-fluid pressure during earthquake faulting—a mechanism for partial or total stress relief. Nature 243, 66–68 (1973).

  • Sibson, R.: Thickness of the seismic slip zone. Bull. Seism. Soc. Am. 93, 1169–1178 (2003).

  • Sulem, J., Famin, V.: Thermal decomposition of carbonates in fault zones: slip-weakening and temperature-limiting effects. J. Geophys. Res. 114, B03309 (2009). doi:10.1029/2008JB006004.

  • Sulem, J., Lazar, P., Vardoulakis, I.: Thermo-poro-mechanical properties of clayey gouge and application to rapid fault shearing. Int. J. Num. Anal. Meth. Geomechanics 31(3), 523–540 (2007).

  • Sulem, J., Stefanou, I., Veveakis, E.: Stability analysis of undrained adiabatic shearing of a rock layer with cosserat microstructure. Granular Matter 13(3), 261–268 (2011). doi:10.1007/s10035-010-0244-1.

  • Sulem J. Vardoulakis I., O.H., Perdikatsis, V.: Thermo-poro-mechanical properties of the aigion fault clayey gouge - application to the analysis of shear heating and fluid pressurization. Soils and Foundations 45, 97–108 (2005).

  • Taylor, G., Quinney, H.: The latent energy remaining in a metal after cold working. Proc. R. Soc., Ser. A. 143, 307–326. (1934).

  • Tobolsky, A., Andrews, R.: Systems manifesting superposed elastic and viscous behaviour. J. Chem. Phys. 13(1), 3–27 (1945).

  • Toro, G.D., Han, R., Hirose, T., DePaola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T.: Fault lubrication during earthquakes. Nature 471, 494–498 (2011).

  • Townend, J.: Drilling, sampling, and monitoring the alpine fault: Deep fault drilling project–alpine fault, New Zealand; Franz Josef, New Zealand, 22–28 March 2009. Eos, Transactions American Geophysical Union 90(36), 312–312 (2009). doi:10.1029/2009EO360004

  • Vardoulakis, I., Sulem, J. (eds.): Bifurcation Analysis in Geomechanics. Blankie Acc. and Professional (1995).

  • Veveakis, E., Alevizos, S., Vardoulakis., I.: Chemical reaction capping of thermal instabilities during shear of frictional faults. J. Mech. Phys. Solids 58, 1175–1194 (2010). doi:10.1016/j.jmps.2010.06.010.

  • Veveakis, E., Poulet, T., Alevizos, S.: Thermo-poro-mechanics of chemically active creeping faults. 2: transient considerations. J. Geophys. Res. pp. In Press, 2014. doi:10.1002/2013JB010071.

  • Veveakis, E., Stefanou, I., Sulem, J.: Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects. Geotechnique Let. 3(2), 31–36 (2013).

  • Veveakis, E., Sulem, J., Stefanou, I.: Modeling of fault gouges with cosserat continuum mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms. J. Struct. Geology 38, 254–264 (2012). doi:10.1016/j.jsg.2011.09.012.

  • Veveakis, E., Vardoulakis, I., DiToro., G.: Thermoporomechanics of creeping landslides: The 1963 vaiont slide, northern Italy. J. Geophys. Res. 112, F03026 (2007). doi:10.1029/2006JF000702.

  • Wibberley, C., Shimamoto, T.: Earthquake slip weakening and asperities explained by thermal pressurization. Nature 426(4), 689–692 (2005).

  • Wibberley, C.A.J., Shimamoto, T.: Internal structure and permeability of major strike-slip fault zones: the median tectonic line in mid prefecture, southwest Japan. J. Struct. Geol. 25, 59–78 (2003).

  • Yuen, D., Schubert, G.: Asthenospheric shear flow: thermally stable or unstable? Geophys. Res. Lett 4(11), 503–506 (1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Veveakis.

Appendix: Poro-Chemical Model

Appendix: Poro-Chemical Model

At high temperatures the solid \(AB\) breaks down, producing excess \(B\) fluid, and increasing the fluid pore pressure through a general fluid-release reaction of the form:

$$\begin{aligned} \nu _1 AB_{\rm s} \rightleftharpoons \nu _2 A_{\rm s} + \nu _3 B_{\rm f} \end{aligned}.$$
(20)

We assume the following relations for the partial molar reaction rates for the species,

$$\begin{aligned} r_{AB}&= - \left[ \frac{\rho _{AB}}{M_{AB}} (1 - \phi )(1 - s) \right] ^{\nu _1} k_{\rm F} \hbox { exp}(-Q_{\rm F}/RT) \nonumber \\ r_A&= \left[ \frac{\rho _{A}}{M_A} (1 - \phi ) s \right] ^{\nu _2} k_{\rm R} \hbox { exp}(-Q_{\rm R}/RT) \nonumber \\ r_B&= \left[ \Delta \phi _{\rm chem} \frac{\rho _{B}}{M_B} \right] ^{\nu _3} k_{\rm R} \hbox { exp}(-Q_{\rm R}/RT). \end{aligned}$$
(21)

From the stoichiometry of the considered reaction, Eq. (20), it should hold that:

$$\begin{aligned} -\frac{r_{AB}}{\nu _1} = \frac{r_A}{\nu _2} = \frac{r_B}{\nu _3}. \end{aligned}$$
(22)

From Eqs. (2122), and for \(\nu _1=\nu _2=\nu _3=1\) we derive the poro-chemical model

$$\begin{aligned} \Delta \phi _{\rm chem}&= A_{\phi } \frac{1-\phi _0}{1 + \frac{\rho _{B}}{\rho _{A}} \frac{M_{A}}{M_{B}} \frac{1}{s}}, \nonumber \\ s&= \frac{\omega _{\rm rel}}{1+\omega _{rel}}, \quad \hbox{and}\nonumber \\ r_{\rm rel}&= \frac{\rho _{AB}}{\rho _{A}} \frac{M_{A}}{M_{AB}} K_{\rm c} \hbox { exp} \left( \frac{\Delta h}{RT} \right). \end{aligned}$$
(23)

In Eq. (23), \(K_{\rm c} = k_{\rm F} / k_{\rm R}\) is the ratio of the pre-exponential factors of the Arrhenius reaction rates and \(\Delta h= Q_{\rm R} - Q_{\rm F}\) the difference of the forward and reverse activation energies. The parameter \(A_{\phi }\) is a coefficient that determines the amount of the interconnected pore-volume (porosity) created due to the reaction. We assume that all the fluid generated contributes to the interconnected pore volume, and, thus, set \(A_{\phi } = 1\).

Following these considerations, the rates of the forward (\(\omega _{\rm F}\)) and reverse (\(\omega _{\rm R}\)) first order reactions can be calculated to be

$$\begin{aligned} r_{\rm F} = r_{AB}&= \frac{\rho _{AB}}{M_{AB}} (1 - \phi )(1 - s) k_{\rm F} \hbox {e}^{-Q_{\rm F}/RT}\end{aligned}.$$
(24)
$$\begin{aligned} r_{\rm R}&= r_{A}r_{B} = \frac{\rho _{A} \rho _{B}}{M_A M_B} (1 - \phi ) s \Delta \phi _{\rm chem} k_{\rm R} \hbox {e}^{-Q_{\rm R}/RT}. \end{aligned}$$
(25)

Note that, for simplicity, we have assumed in Eq. (21) that the two products are produced with the same pre-exponential factor and activation energies. If this is not the case, the above model should be modified accordingly. The net reaction rate would then be \(r = r_{\rm F} - r_{\rm R} \frac{M_{AB}}{\rho _{AB}}\) (the reverse reaction rate was normalized with the reference concentration \(\frac{\rho _{AB}}{M_{AB}}\) for dimensional purposes), which however would be essentially irreversible (\(r_{\rm F} \gg r_{\rm R}\)) in the case \(K_{\rm c} = k_{\rm F} / k_{\rm R} \gg 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veveakis, E., Regenauer-Lieb, K. The Fluid Dynamics of Solid Mechanical Shear Zones. Pure Appl. Geophys. 171, 3159–3174 (2014). https://doi.org/10.1007/s00024-014-0835-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0835-6

Keywords

Navigation