Skip to main content
Log in

Global Stability of Minkowski Space for the Einstein–Maxwell–Klein–Gordon System in Generalized Wave Coordinates

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We prove global existence for Einstein’s equations with a charged scalar field for initial conditions sufficiently close to the Minkowski spacetime without matter. The proof relies on generalized wave coordinates adapted to the outgoing Schwarzschild light cones and the estimates for the massless Maxwell–Klein–Gordon system, on the background of metrics asymptotically approaching Schwarzschild at null infinity in such coordinates, by Kauffman (Global stability for charged scalar fields in an asymptotically flat metric in harmonic gauge, preprint, 2018). The generalized wave coordinates are obtained from a change of variables, introduced in Lindblad (Commun Math Phys 353(1):135–184, 2017), to asymptotically Schwarzschild coordinates at null infinity. The main technical advances are that the change of coordinates makes critical components of the metric decay faster, making the quasilinear wave operator closer to the flat wave operator, and that commuting with modified Lie derivatives preserves the geometric null structure, improving the error terms. This improved decay of the metric is essential for proving the estimates in Kauffman (2018) and will likely be useful in other contexts as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alinhac, S.: An example of blowup at infinity for a quasilinear wave equation. Asterisque 284, 1–91 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bieri, L.: Extensions of the Stability Theorem of the Minkowski Space in General Relativity, Solutions of the Vacuum Einstein Equations. American Mathematical Society, Boston (2009)

    MATH  Google Scholar 

  3. Bieri, L., Miao, S., Shahshahani, S.: Asymptotic properties of solutions of the Maxwell–Klein–Gordon equation with small data. Commun. Anal. Geom. 25(1), 25–96 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Candy, T., Kauffman, C., Lindblad, H.: Asymptotic behavior of the Maxwell–Klein–Gordon system. Commun. Math. Phys. 367, 683–716 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Choquet-Bruhat, Y.: Théreme d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Choquet-Bruhat, Y.: The null condition and asymptotic expansions for the Einstein’s equations. Ann. Phys. (Leipzig) 9, 258–266 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Choquet-Bruhat, Y., Christodoulou, D.: Existence of global solutions of the Yang–Mills, Higgs and spinor field equations in \(3+1\) dimensions Ann. Sci. cole Norm. Sup. (4) 14(4), 481–506 (1981)

    MATH  Google Scholar 

  8. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Christodoulou, D.: Global solutions of nonlinear hyperbolic equations for small initial data. Commun. Pure Appl. Math. 39, 267–282 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  11. Eardley, D., Moncrief, V.: The global existence of Yang–Mills–Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties. Commun. Math. Phys. 83, 171–191 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Eardley, D., Moncrief, V.: The global existence of Yang–Mills–Higgs fields in 4-dimensional Minkowski space. II. Completion of proof. Commun. Math. Phys. 83, 193–212 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Fajman, D., Joudioux, J., Smulevici, J.: A vector field method for relativistic transport equations with applications. Anal. PDE 10, 1539–1612 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Fang, A., Wang, Q., Yang, S.: Global solution for massive Maxwell–Klein–Gordon equations with large Maxwell field. Ann. PDE 7, 3 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587–609 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Gasperin, E., Hilditch, D.: The weak null condition in free-evolution schemes for numerical relativity: dual foliation GHG with constraint damping. Class. Quantum Gravity 36, 195016 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  17. He, L.: Scattering from infinity of the Maxwell Klein Gordon equations in Lorenz gauge. Commun. Math. Phys. 386, 1747–1801 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Hintz, P., Vasy, A.: Stability of Minkowski space and polyhomogeneity of the metric. Ann. PDE 6(1), 146 (2020). ((Paper No. 2))

    MathSciNet  MATH  Google Scholar 

  19. Huneau, C.: Stability of Minkowski space-time with a translation space-like killing field. Ann. PDE 4, 12 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Hörmander, L.: The lifespan of classical solutions of nonlinear hyperbolic equations. In: Pseudodifferential Operators, Lecture Notes in Mathematics, vol. 1256, pp. 214–280. Springer (1987)

  21. Ionescu, A.D., Pausader, B.: The Einstein-Klein-Gordon Coupled System. Global Stability of the Minkowski Solution: (AMS-213). Princeton University Press, Princeton (2022). https://doi.org/10.1515/9780691233031

  22. John, F.: Blow-up for quasilinear wave equations in three space dimensions. CPAM 34(1), 29–51 (1981)

    MathSciNet  MATH  Google Scholar 

  23. John, F.: Blow-up of radial solutions of \(u_{tt}\!=\!c^2(u_t)\Delta u\) in three space dimensions. Mat. Apl. Com. 4(1), 3–18 (1985)

    Google Scholar 

  24. Kauffman, C.: Global stability for charged scalar fields in an asymptotically flat metric in harmonic gauge, preprint (2018)

  25. Klainerman, S.: Long time behavior of solutions to nonlinear wave equations. In: Proceedings of ICM, Warsaw, pp. 1209–1215 (1982)

  26. Klainerman, S.: The Null Condition and Global Existence to Nonlinear Wave Equations Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1; Santa Fe, N.M., 1984 Lectures in Applied Mathematics, vol. 23, pp. 293–326 (1989)

  27. Klainerman, S., Machedon, M.: On the Maxwell–Klein–Gordon equation with finite energy. Duke Math. J. 74(1), 19–44 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity, Vol. 23 Lectures in Applied Mathematics. Birkhäuser Boston Inc., Boston, MA (2003)

    MATH  Google Scholar 

  29. Klainerman, S., Wang, Q., Yang, S.: Global solution for massive Maxwell–Klein–Gordon equations, preprint (2018)

  30. LeFloch, P.G., Ma, Y.: The global nonlinear stability of Minkowski space for self-gravitating massive fields. arXiv:1511.03324

  31. Loizelet, J.: Solutions globales des équations d’Einstein-Maxwell. Ann. Fac. Sci. Toulouse Math. 18, 565–610 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Lindblad, H.: On the lifespan of solutions of nonlinear wave equations with small initial data. Commun. Pure Appl. Math. 43, 445–472 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Lindblad, H.: Global solutions of nonlinear wave equations. Commun. Pure Appl. Math. 45(9), 1063–1096 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Lindblad, H.: Global solutions of quasilinear wave equations. Am. J. Math. 130, 115 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Lindblad, H.: On the asymptotic behavior of solutions to Einstein’s vacuum equations in wave coordinates. Commun. Math. Phys. 353(1), 135–184 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Lindblad, H., Rodnianski, I.: The weak null condition for Einstein’s equations. C. R. Math. Acad. Sci. Paris 336(11), 901–906 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Lindblad, H., Rodnianski, I.: Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. Math. 171, 1401–1477 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Lindblad, H., Sterbenz, J.: Global stability for charged scalar fields on Minkowski space. Int. Math. Res. Pap. (2006)

  40. Lindblad, H., Taylor, M.: Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge. Arch. Ration. Mech. Anal. 235, 517–633 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Lindblad, H., Tohaneanu, M.: Global existence for quasilinear wave equations close to Schwarzschild. Commun. PDE 43(6), 893–944 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Psarelli, M.: Asymptotic behavior of the solutions of Maxwell–Klein–Gordon field equations in 4-dimensional Minkowski space. Commun. Partial Differ. Equ. 24, 223–272 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Shu, W.: Global existence of Maxwell–Higgs fields. Pitman Res. Notes Math. Ser. 253, 214–227 (1992)

    MathSciNet  MATH  Google Scholar 

  44. Speck, J.: The global stability of the Minkowski spacetime solution to the Einstein-nonlinear electromagnetic system in wave coordinates. Anal. PDE 7, 771–901 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Schoen, R., Yau, S.: On the proof of the positive mass conjecture in general relativity. CMP 65, 45–76 (1979)

    MathSciNet  MATH  Google Scholar 

  46. Taylor, M.: The global nonlinear stability of Minkowski space for the massless Einstein–Vlasov system. Ann. PDE 3, 9 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  48. Witten, E.: A new proof of the positive mass theorem. Commun. Math. Phys. 80, 381–402 (1981)

    ADS  MATH  Google Scholar 

  49. Yang, S.: Decay of solutions of Maxwell–Klein–Gordon equations with large Maxwell field. Anal. PDE 9(8), 1829–1902 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Yang, S., Yu, P.: On global dynamics of the Maxwell–Klein–Gordon equations. Camb. J. Math. 7, 365–467 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Zipser, N.: Extensions of the Stability Theorem of the Minkowski Space in General Relativity. Solutions of the Einstein–Maxwell Equations. American Mathematical Society, Boston (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

C. K. was supported in party by NSF Grant DMS-1500925 and ERC Consolidator Grant 77224. H.L. was supported in part by NSF Grant DMS-1500925 and Simons Collaboration Grant 638955. We would also like to thank the Mittag Leffler Institute for their hospitality during the Fall 2019 program in Geometry and Relativity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lindblad.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. The Ricci Curvature in Terms of Generalized Wave Coordinates

Here we derive the expression for Einstein’s equations for the metric g in terms of a quantity that is assumed to be under control by a generalized wave coordinate condition. In this paper, we will only use these equations in the case this quantity vanishes. However, in Appendix 16.1.5 we show that the equations we use can alternatively be derived as expressing the metric in generalized wave coordinates.

We consider the generalized harmonic coordinate condition

$$\begin{aligned} \Gamma ^\alpha = \Gamma ^{\alpha }_{\beta \gamma }g^{\beta \gamma }, \end{aligned}$$
(A.1a)

where \(\Gamma \) is a known vector. Using this notation, the harmonic coordinate condition is equivalent to the condition \(\Gamma ^\alpha = 0\). We can rewrite (A.1a) as

$$\begin{aligned} g^{\alpha \beta }\partial _\alpha g_{\beta \gamma } = \Gamma _\gamma + \Gamma ^{\delta }_{\gamma \delta }. \end{aligned}$$
(A.1b)

The Ricci curvature tensor

$$\begin{aligned} R_{\alpha \beta } = \partial _\gamma \Gamma ^{\gamma }_{\alpha \beta } - \partial _\beta \Gamma ^{\gamma }_{\alpha \gamma } + \Gamma ^\gamma _{\gamma \rho }\Gamma ^{\rho }_{\alpha \beta } - \Gamma ^\gamma _{\alpha \rho }\Gamma ^{\rho }_{\beta \gamma }, \end{aligned}$$

satisfies the following identity

Lemma A.1

$$\begin{aligned} R_{\alpha \beta }= & {} -\frac{1}{2} {\square }^{\,g} g_{\alpha \beta } +\frac{1}{2} \Gamma ^\delta \partial _\delta g_{\alpha \beta } + \frac{1}{2}(\partial _\alpha \Gamma _\beta + \partial _\beta \Gamma _\alpha ) -\!\frac{1}{2} \Gamma _\alpha \Gamma _\beta \\{} & {} + \frac{1}{2}\Gamma ^\gamma _{\alpha \gamma }\Gamma ^{\rho }_{\beta \rho }\! - \frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }\partial _\alpha g_{\delta \rho }\partial _\beta g_{\sigma \gamma }\!+ Q_{\alpha \beta }, \end{aligned}$$

where \(Q_{\alpha \beta }\) is a linear combination of classical null forms.

Remark A.2

Note that the second term on the right is exactly the difference between the geometric wave operator and the reduced wave operator. Having this term together with the other semilinear terms provides an additional cancelation, c.f. [16].

Proof

For the proof, we expand each of the four terms in (A). First,

$$\begin{aligned} \partial _\gamma \Gamma ^{\gamma }_{\alpha \beta }&= \frac{1}{2}(\partial _\gamma g^{\gamma \delta })(\partial _\alpha g_{\beta \delta } + \partial _\beta g_{\alpha \delta } - \partial _\delta g_{\alpha \beta }) \\&\quad + \frac{1}{2} g^{\gamma \delta }(\partial _\alpha \partial _\gamma g_{\beta \delta } + \partial _\beta \partial _\gamma g_{\alpha \delta } - \partial _\gamma \partial _\delta g_{\alpha \beta }) \\&= \frac{1}{2}(\partial _\gamma g^{\gamma \delta })(\partial _\alpha g_{\beta \delta } + \partial _\beta g_{\alpha \delta } - \partial _\delta g_{\alpha \beta }) \\&\quad + \frac{1}{2} (\partial _\alpha (g^{\gamma \delta }\partial _\gamma g_{\beta \delta }) + \partial _\beta (g^{\gamma \delta }\partial _\gamma g_{\alpha \delta }) - g^{\gamma \delta }\partial _\gamma \partial _\delta g_{\alpha \beta }) \\&\quad - \frac{1}{2}\partial _\alpha g^{\gamma \delta }\partial _\gamma g_{\beta \delta } - \frac{1}{2}\partial _\beta g^{\gamma \delta }\partial _\gamma g_{\alpha \delta }. \end{aligned}$$

It follows from (A.1b) that

$$\begin{aligned} -\frac{1}{2}\partial _\gamma g^{\gamma \delta } = \frac{1}{2} \Gamma ^\delta + \frac{1}{4} g^{\rho \sigma }g^{\delta \gamma }\partial _\gamma g_{\rho \sigma }, \end{aligned}$$

and therefore,

$$\begin{aligned} -\frac{1}{2}\partial _\gamma g^{\gamma \delta }\partial _\delta g_{\alpha \beta } = \frac{1}{2} \Gamma ^\delta \partial _\delta g_{\alpha \beta } + \frac{1}{4} g^{\rho \sigma }g^{\delta \gamma }\partial _\gamma g_{\rho \sigma }\partial _\delta g_{\alpha \beta }. \end{aligned}$$

If we define

$$\begin{aligned} Q^1_{\alpha \beta }= & {} \frac{1}{2}(\partial _\gamma g^{\gamma \delta }\partial _\alpha g_{\beta \gamma } - \partial _\alpha g^{\gamma \delta }\partial _\gamma g_{\beta \gamma }) +\frac{1}{2}( \partial _\gamma g^{\gamma \delta }\partial _\beta g_{\alpha \delta } - \partial _\beta g^{\gamma \delta }\partial _\gamma g_{\beta \delta })\\{} & {} + \frac{1}{4} g^{\rho \sigma }g^{\delta \gamma }\partial _\gamma g_{\rho \sigma }\partial _\delta g_{\alpha \beta }, \end{aligned}$$

and apply (A.1b) to rewrite

$$\begin{aligned} \frac{1}{2}\partial _\alpha (g^{\gamma \delta }\partial _\gamma g_{\beta \delta })&= \frac{1}{2}\partial _\alpha \Gamma _\beta + \frac{1}{4} \partial _\alpha g^{\gamma \delta }\partial _\beta g_{\gamma \delta } + \frac{1}{4}g^{\gamma \delta }\partial _\alpha \partial _\beta g_{\gamma \delta }, \\ \frac{1}{2}\partial _\beta (g^{\gamma \delta }\partial _\gamma g_{\alpha \delta })&= \frac{1}{2}\partial _\beta \Gamma _\alpha + \frac{1}{4} \partial _\beta g^{\gamma \delta }\partial _\alpha g_{\gamma \delta } + \frac{1}{4}g^{\gamma \delta }\partial _\alpha \partial _\beta g_{\gamma \delta }, \end{aligned}$$

we have the following identity:

$$\begin{aligned} \partial _\gamma \Gamma ^\gamma _{\alpha \beta }= & {} \!\frac{1}{2} \Gamma ^\delta \partial _\delta g_{\alpha \beta } \! + \! \frac{1}{2}(\partial _\alpha \Gamma _\beta + \partial _\beta \Gamma _\alpha ) \! + \!\frac{1}{4}(\partial _\alpha g^{\gamma \delta } \partial _\beta g_{\gamma \delta } \! + \!\partial _\beta g^{\gamma \delta }\partial _\alpha g_{\gamma \delta }) \!\\{} & {} + \!\frac{1}{2} g^{\gamma \delta }\partial _\alpha \partial _\beta g_{\gamma \delta } \!- \!\frac{1}{2} {\widetilde{\square }}_g g_{\alpha \beta } \! + \! Q^1_{\alpha \beta }. \end{aligned}$$

Now we recall the identity

$$\begin{aligned} \Gamma _{\alpha \gamma }^\gamma = \frac{1}{2} g^{\gamma \delta }\partial _\alpha g_{\gamma \delta }. \end{aligned}$$

It follows that

$$\begin{aligned} -\partial _\beta \Gamma ^{\gamma }_{\alpha \gamma } = -\frac{1}{2}\partial _\beta g^{\gamma \delta } \partial _\alpha g_{\gamma \delta } - \frac{1}{2} g^{\gamma \delta }\partial _\alpha \partial _\beta g_{\gamma \delta }. \end{aligned}$$

We can define

$$\begin{aligned} Q^2_{\alpha \beta }= & {} \frac{1}{4}(\partial _\alpha g^{\gamma \delta }\partial _\beta g_{\gamma \delta } - \partial _\beta g^{\gamma \delta }\partial _\alpha g_{\gamma \delta }) \end{aligned}$$

in order to rewrite

$$\begin{aligned} -\partial _\beta \Gamma ^{\gamma }_{\alpha \gamma } = -\frac{1}{4}(\partial _\alpha g^{\gamma \delta }\partial _\beta g_{\gamma \delta } + \partial _\beta g^{\gamma \delta }\partial _\alpha g_{\gamma \delta }) - \frac{1}{2} g^{\gamma \delta }\partial _\alpha \partial _\beta g_{\gamma \delta } + Q^2_{\alpha \beta }. \end{aligned}$$

Next, we expand

$$\begin{aligned} \Gamma ^\gamma _{\gamma \rho }\Gamma ^{\rho }_{\alpha \beta }&= \frac{1}{4} g^{\rho \sigma }g^{\gamma \delta }\partial _\rho g_{\gamma \delta }\left( \partial _\alpha g_{\beta \sigma } + \partial _\beta g_{\alpha \sigma } - \partial _\sigma g_{\alpha \beta }\right) . \end{aligned}$$

We define

$$\begin{aligned} Q^3_{\alpha \beta }= & {} \frac{1}{4}g^{\rho \sigma }g^{\gamma \delta }\left( (\partial _\rho g_{\gamma \delta } \partial _\alpha g_{\beta \sigma } - \partial _\alpha g_{\gamma \delta }\partial _\rho g_{\beta \sigma })\right. \\{} & {} \left. + (\partial _\rho g_{\gamma \delta }\partial _\beta g_{\alpha \sigma } - \partial _\beta g_{\gamma \delta }\partial _\rho g_{\alpha \sigma }) - \partial _\rho g_{\gamma \delta } \partial _\sigma g_{\alpha \beta }\right) \end{aligned}$$

and rewrite

$$\begin{aligned} \frac{1}{4} g^{\gamma \delta }\partial _\alpha g_{\gamma \delta }g^{\rho \sigma }\partial _\rho g_{\beta \sigma }&= \frac{1}{4} g^{\gamma \delta }\partial _\alpha g_{\gamma \delta }\Big (\Gamma _\beta + \frac{1}{2} g^{\rho \sigma }\partial _\beta g_{\rho \sigma }\Big )\\ \frac{1}{4} g^{\gamma \delta }\partial _\beta g_{\gamma \delta }g^{\rho \sigma }\partial _\rho g_{\alpha \sigma }&=\frac{1}{4} g^{\gamma \delta }\partial _\beta g_{\gamma \delta }\Big (\Gamma _\alpha + \frac{1}{2} g^{\rho \sigma }\partial _\alpha g_{\rho \sigma }\Big ). \end{aligned}$$

We therefore have

$$\begin{aligned} \Gamma ^\gamma _{\gamma \rho }\Gamma ^{\rho }_{\alpha \beta } = Q^3_{\alpha \beta } + \frac{1}{2}(\Gamma ^{\gamma }_{\alpha \gamma }\Gamma _\beta + \Gamma ^{\gamma }_{\beta \gamma }\Gamma _\alpha ) + \Gamma ^\gamma _{\alpha \gamma }\Gamma ^{\rho }_{\beta \rho }. \end{aligned}$$

Now we take the final term,

$$\begin{aligned} -\Gamma ^\gamma _{\alpha \rho }\Gamma ^\rho _{\beta \gamma } = -\frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }(\partial _\alpha g_{\delta \rho } + \partial _\rho g_{\alpha \delta } - \partial _\delta g_{\alpha \rho })(\partial _\beta g_{\sigma \gamma } + \partial _\gamma g_{\beta \sigma }-\partial _\sigma g_{\beta \gamma }). \end{aligned}$$

We expand it and deal with it term by term. We first take

$$\begin{aligned} -\frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }\partial _\alpha g_{\delta \rho }(\partial _\gamma g_{\beta \sigma } - \partial _\sigma g_{\beta \gamma })= & {} -\frac{1}{4}g^{\gamma \delta }g^{\rho \sigma }((\partial _\alpha g_{\delta \rho }\partial _\gamma g_{\beta \sigma } - \partial _\gamma g_{\delta \rho }\partial _\alpha g_{\beta \sigma }) \\{} & {} -(\partial _\alpha g_{\delta \rho }\partial _\sigma g_{\beta \gamma } - \partial _\sigma g_{\delta \rho }\partial _\alpha g_{\beta \gamma })) \quad \\{} & {} -\frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }(\partial _\gamma g_{\delta \rho }\partial _{\alpha }g_{\beta \sigma } - \partial _\sigma g_{\delta \rho }\partial _\alpha g_{\beta \gamma }), \\= & {} -\frac{1}{4}g^{\gamma \delta }g^{\rho \sigma }((\partial _\alpha g_{\delta \rho }\partial _\gamma g_{\beta \sigma } - \partial _\gamma g_{\delta \rho }\partial _\alpha g_{\beta \sigma })\\{} & {} -(\partial _\alpha g_{\delta \rho }\partial _\sigma g_{\beta \gamma } - \partial _\sigma g_{\delta \rho }\partial _\alpha g_{\beta \gamma })). \end{aligned}$$

The two terms that cancel out are identical, which follows straightforwardly from renaming contracted indices and noting symmetry of g. Similarly,

$$\begin{aligned} -\frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }\partial _\beta g_{\sigma \gamma }(\partial _\rho g_{\alpha \delta }\! - \partial _\delta g_{\alpha \rho })= & {} -\frac{1}{4}g^{\gamma \delta }g^{\rho \sigma }((\partial _\beta g_{\sigma \gamma }\partial _\rho g_{\alpha \gamma } \!- \partial _\rho g_{\sigma \gamma }\partial _\beta g_{\alpha \gamma }) \\{} & {} - (\partial _\beta g_{\sigma \gamma }\partial _\delta g_{\alpha \rho }\! - \partial _\delta g_{\sigma \gamma }\partial _\beta g_{\alpha \rho })). \end{aligned}$$

Next, we take

$$\begin{aligned} -\frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }(\partial _\rho g_{\alpha \delta }\partial _\gamma g_{\beta \sigma } + \partial _\delta g_{\alpha \rho }\partial _\sigma g_{\beta \gamma }). \end{aligned}$$

By renaming indices, we have

$$\begin{aligned} -\frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }(\partial _\rho g_{\alpha \delta }\partial _\gamma g_{\beta \sigma } + \partial _\delta g_{\alpha \rho }\partial _\sigma g_{\beta \gamma })= & {} -\frac{1}{2} g^{\gamma \delta }g^{\rho \sigma }(\partial _\rho g_{\alpha \delta }\partial _\gamma g_{\beta \sigma }) \\= & {} -\frac{1}{2} g^{\gamma \delta }g^{\rho \sigma } ((\partial _\rho g_{\alpha \delta }\partial _\gamma g_{\beta \sigma } - \partial _\gamma g_{\alpha \delta } \partial _\rho g_{\beta \sigma })\\{} & {} + \partial _\gamma g_{\alpha \delta }\partial _\rho g_{\beta \sigma }) \\= & {} -\frac{1}{2} g^{\gamma \delta }g^{\rho \sigma }(\partial _\rho g_{\alpha \delta }\partial _\gamma g_{\beta \sigma } - \partial _\gamma g_{\alpha \delta } \partial _\rho g_{\beta \sigma })\\{} & {} -\frac{1}{2}(\Gamma _\alpha + \Gamma ^{\gamma }_{\alpha \gamma })(\Gamma _\beta + \Gamma ^\delta _{\beta \delta }). \end{aligned}$$

Defining

$$\begin{aligned} Q^4_{\alpha \beta }&= -\frac{1}{4}g^{\gamma \delta }g^{\rho \sigma }((\partial _\alpha g_{\delta \rho }\partial _\gamma g_{\beta \sigma } - \partial _\gamma g_{\delta \rho }\partial _\alpha g_{\beta \sigma })-(\partial _\alpha g_{\delta \rho }\partial _\sigma g_{\beta \gamma } - \partial _\sigma g_{\delta \rho }\partial _\alpha g_{\beta \gamma })) \\&\quad -\frac{1}{4}g^{\gamma \delta }g^{\rho \sigma }((\partial _\beta g_{\sigma \gamma }\partial _\rho g_{\alpha \gamma } - \partial _\rho g_{\sigma \gamma }\partial _\beta g_{\alpha \gamma }) - (\partial _\beta g_{\sigma \gamma }\partial _\delta g_{\alpha \rho } - \partial _\delta g_{\sigma \gamma }\partial _\beta g_{\alpha \rho })) \\&\quad + \frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }\partial _\rho g_{\alpha \delta }\partial _\sigma g_{\beta \gamma } + \frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }\partial _\delta g_{\alpha \rho }\partial _\gamma g_{\beta \sigma }\\&\quad -\frac{1}{2} g^{\gamma \delta }g^{\rho \sigma }(\partial _\rho g_{\alpha \delta }\partial _\gamma g_{\beta \sigma } - \partial _\gamma g_{\alpha \delta } \partial _\rho g_{\beta \sigma }), \end{aligned}$$

we can expand

$$\begin{aligned} -\Gamma ^\gamma _{\alpha \rho }\Gamma ^\rho _{\beta \gamma } = -\frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }\partial _\alpha g_{\delta \rho }\partial _\beta g_{\sigma \gamma } - \frac{1}{2} (\Gamma _\alpha + \Gamma ^{\gamma }_{\alpha \gamma })(\Gamma _\beta + \Gamma ^\delta _{\beta \delta })+ Q^4_{\alpha \beta }. \end{aligned}$$

We can combine everything to get

$$\begin{aligned} R_{\alpha \beta }&= -\frac{1}{2} {\square }^{\,g} g_{\alpha \beta } +\frac{1}{2} \Gamma ^\delta \partial _\delta g_{\alpha \beta }\\&\quad + \frac{1}{2}(\partial _\alpha \Gamma _\beta + \partial _\beta \Gamma _\alpha ) -\frac{1}{2} \Gamma _\alpha \Gamma _\beta \\&\quad + \frac{1}{2}\Gamma ^\gamma _{\alpha \gamma }\Gamma ^{\rho }_{\beta \rho } - \frac{1}{4} g^{\gamma \delta }g^{\rho \sigma }\partial _\alpha g_{\delta \rho }\partial _\beta g_{\sigma \gamma }+ \\&\quad + Q^1_{\alpha \beta } + Q^2_{\alpha \beta } + Q^3_{\alpha \beta } + Q^4_{\alpha \beta }. \end{aligned}$$

\(\square \)

1.1 A.0.6. The Expression for Ricci Curvature in Terms of the Wave Operator

For a general metric, g twice the Ricci curvature can by Lemma A.1 be written

$$\begin{aligned} 2 R_{\mu \nu }= & {} -\square ^{\,g} g_{\mu \nu }+\partial _\mu \Gamma _{\!\nu }+\partial _\nu \Gamma _{\!\mu } +F_{\!\mu \nu }(g)[\partial g,\partial g]\nonumber \\{} & {} -\Gamma _{\!\mu } \Gamma _{\!\nu }+\Gamma ^\delta \partial _\delta g_{\mu \nu }, \quad \text {where} \quad \Gamma _{\!\mu }\!=g_{\mu \delta }g^{\alpha \beta }\Gamma _{\!\alpha \beta }^\delta , \end{aligned}$$
(A.3)

and \(F_{\mu \nu }\) is as in (1.6). The Einstein vacuum equations in harmonic coordinates are \(R_{\mu \nu }\!=0\) and \(\Gamma _{\!\mu }\!=0\). The Minkowski metric and the Schwarzschild expressed in harmonic coordinates satisfy these. Since \(m_0\) in (4.5) is the leading term in the expansion of the Schwarzschild metric, it is therefore not surprising that it approximately satisfies these. By a similar calculation as above using (4.2), we have

$$\begin{aligned} \Gamma ^{0\mu }= & {} m_0^{\alpha \beta } \Gamma ^{0\mu }_{\alpha \beta } =\partial _\alpha m_0^{\alpha \beta } -\tfrac{1}{2}m_0^{\alpha \beta } m^{-1}_{0\gamma \mu }\,\partial _\alpha m_0^{\gamma \mu } \\= & {} \partial _\alpha H_0^{\alpha \mu } -\tfrac{1}{2}m^{\gamma \mu } m_{\alpha \beta }\,\partial _\gamma H_0^{\alpha \beta } +W^\mu (H_0)[H_0,\partial H_0]\\= & {} {\chi }^{\,\prime \!}\big (\tfrac{r}{t+1}\big )M\delta ^{\mu 0} r^{-2} +\chi ^{\mu }\big (\tfrac{r}{1+t},\omega ,\tfrac{M}{r}\big )M^2r^{-3}. \end{aligned}$$

Also using (4.7), it follows that

$$\begin{aligned} 2 R_{\mu \nu }^0= & {} -\square ^{m_0} m^0_{\mu \nu }+\partial _\mu \Gamma ^0_\nu +\partial _\nu \Gamma ^0_\mu +\Gamma ^{0\delta }\partial _\delta m^0_{\mu \nu } +F_{\mu \nu }(m_0)[\partial m^0,\partial m^0]-\Gamma ^0_\mu \Gamma ^0_\nu \\= & {} \chi ^\prime _{2,\,\mu \nu }\big (\tfrac{r}{1+t},\omega ,\tfrac{M}{r}\big )M r^{-3} +\chi _{2,\,\mu \nu }\big (\tfrac{r}{1+t},\omega ,\tfrac{M}{r}\big )M^2 r^{-4}. \end{aligned}$$

Appendix B. Einstein’s Equations in Generalized Wave Coordinates

There is a different way of deriving the reduced Einstein’s equations in the new coordinates. Instead of using covariant derivatives with respect to the new coordinates, one can consider the new coordinates as generalized wave coordinates and use the procedure for deriving Einstein’s equations in generalized wave coordinates. Although we decided not to do it that way, here we include the calculation since it is of interest that it can be interpreted this way and it could be used elsewhere.

1.1 B.0.7. The Reduced Einstein’s Equations in Generalized Wave Coordinates

By (A.3), Einstein’s equations \({\widetilde{R}}_{ab}=0\) in generalized wave coordinates are

$$\begin{aligned}{} & {} {\widetilde{\square }}^{\,{\widetilde{g}}}\, {\widetilde{g}}_{ab} -{\widetilde{\partial }}_a{\mathcal {W}}_{\!b}({{\widetilde{g}}})-{\widetilde{\partial }}_b {\mathcal {W}}_{\!a}({{\widetilde{g}}})-{\mathcal {W}}^{c}({{\widetilde{g}}}) {\widetilde{\partial }}_c{\widetilde{g}}_{ab}\nonumber \\{} & {} \quad ={\widetilde{F}}_{\!ab} ({{\widetilde{g}}}) [{\widetilde{\partial }}{\widetilde{g}}, {\widetilde{\partial }}{\widetilde{g}}]-{\mathcal {W}}_{\!a}({{\widetilde{g}}}){\mathcal {W}}_{\!b}({{\widetilde{g}}})+{\widetilde{T}}_{ab}, \end{aligned}$$
(B.1)

where \({\widetilde{\square }}^{\,{{\widetilde{g}}}\!}\!= {\widetilde{g}}^{ab}{\widetilde{\partial }}_a{\widetilde{\partial }}_b\), \({\mathcal {W}}_{\!c\!}\!={{\widetilde{g}}}_{\!cd}{\mathcal {W}}^{d}\) and \({\mathcal {W}}^c\) are some given functions of the coordinate \({\widetilde{x}}\) and the metric \({\widetilde{g}}\) not depending on its derivative. One can show that if \({\widetilde{g}}\) satisfy the reduced equations (B.1) and \({\widetilde{\Gamma }}^{c}_{ab}\) are its Christoffel symbols, then the generalized wave coordinate condition

$$\begin{aligned} {\widetilde{g}}^{ab}{\widetilde{\Gamma }}^{c}_{ab} ={\mathcal {W}}^c({{\widetilde{g}}}) \end{aligned}$$

holds if it holds initially. In particular if g is the metric expressed in wave coordinates x, and we choose new coordinates \({\widetilde{x}}={\widetilde{x}}(x)\) which are given fixed functions of the original coordinates then by (5.5)–(5.4)

$$\begin{aligned} {\mathcal {W}}^c({{\widetilde{g}}}) ={{\widetilde{g}}}^{ ab}{\widehat{\Gamma }}^{c}_{ab} ={\mathcal {W}}^c({{\widetilde{g}}})[{\widehat{\Gamma }}], \end{aligned}$$
(B.2)

where \({\widehat{\Gamma }}\) given by (5.4) are the Christoffel symbols of the fixed metric \({\widetilde{m}}\) and the last equality indicates that it is linear in \({\widehat{\Gamma }}\) which by itself is \(O(M\langle t+r\rangle ^{-2}\ln {\langle t+r\rangle })\). By (B.1) and (B.2),

$$\begin{aligned}{} & {} {\widetilde{\square }}^{\,{\widetilde{g}}}\, {\widetilde{g}}_{ab} -{\widetilde{\partial }}_a{\mathcal {W}}_b({{\widetilde{g}}})[{\widehat{\Gamma }}] -{\widetilde{\partial }}_b{\mathcal {W}}_a({{\widetilde{g}}})[{\widehat{\Gamma }}] -{\mathcal {W}}^c({{\widetilde{g}}})[{\widehat{\Gamma }}]\, {\widetilde{\partial }}_c{\widetilde{g}}_{ab} \\{} & {} \quad ={\widetilde{F}}_{ab} ({{\widetilde{g}}}) [{\widetilde{\partial }}{\widetilde{g}},{\widetilde{\partial }}{\widetilde{g}}] -{\mathcal {W}}_{ab}({{\widetilde{g}}})[{\widehat{\Gamma }},{\widehat{\Gamma }}] +{\widetilde{T}}_{ab}, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {W}}_c({{\widetilde{g}}})[{\widehat{\Gamma }}] ={\widetilde{g}}_{cd}{\mathcal {W}}^d({{\widetilde{g}}})[{\widehat{\Gamma }}], \quad \text {and}\quad {\mathcal {W}}_{ab}({{\widetilde{g}}})[{\widehat{\Gamma }},{\widehat{\Gamma }}] ={\mathcal {W}}_a({{\widetilde{g}}})[{\widehat{\Gamma }}]\, {\mathcal {W}}_b({{\widetilde{g}}})[{\widehat{\Gamma }}] \end{aligned}$$

Now let \(h_{\alpha \beta }=g_{\alpha \beta }-m_{\alpha \beta }\) and \(H^{\alpha \beta }=g^{\alpha \beta }-m^{\alpha \beta }=-h_{\alpha \beta }+O(h^2)\)

$$\begin{aligned} {\widetilde{h}}_{ab}={\widetilde{g}}_{ab}-{\widetilde{m}}_{ab}= A^{\,\,\alpha }_{ a} A^{\,\,\beta }_{ b} h_{\alpha \beta } \quad \text {and}\quad {\widetilde{H}}^{ab}={\widetilde{g}}^{ab}-{\widetilde{m}}^{ab}= A_{\,\,\alpha }^{ a} A_{\,\,\beta }^{ b} H^{\alpha \beta }. \end{aligned}$$

Since in particular the Minkowski metric is a solution of the vacuum equations, we have by (B.1) and (B.2) with \({\widetilde{m}}\) in place of \({{\widetilde{g}}}\)

$$\begin{aligned}{} & {} {\widetilde{\square }}^{\,{\widetilde{m}}}\, {\widetilde{m}}_{ab} -{\widetilde{\partial }}_a{\mathcal {W}}_b({\widetilde{m}})[{\widehat{\Gamma }}] -{\widetilde{\partial }}_b{\mathcal {W}}_a({\widetilde{m}})[{\widehat{\Gamma }}] -{\mathcal {W}}^c({\widetilde{m}})[{\widehat{\Gamma }}]\, {\widetilde{\partial }}_c{\widetilde{m}}_{ab}\\{} & {} \quad ={\widetilde{F}}_{ab} ({\widetilde{m}}) [{\widetilde{\partial }}{\widetilde{m}}, {\widetilde{\partial }}{\widetilde{m}}] -{\mathcal {W}}_{ab}({\widetilde{m}})[{\widehat{\Gamma }},{\widehat{\Gamma }}]. \end{aligned}$$

Subtracting the two equations, we get an equation for the difference

$$\begin{aligned}{} & {} \!\!\!\!\!\!{\widetilde{\square }}^{\,{\widetilde{g}}} {\widetilde{h}}_{ab}-{\widetilde{H}}^{cd}{\widetilde{\partial }}_c{\widetilde{\partial }}_d {\widetilde{m}}_{ab} -{\widetilde{\partial }}_a{\widetilde{W}}_{\!b}({\widetilde{h}},{\widetilde{m}}) [{\widetilde{h}},{\widehat{\Gamma }}] -{\widetilde{\partial }}_b{\widetilde{W}}_{\!a}({\widetilde{h}},{\widetilde{m}}) [{\widetilde{h}},{\widehat{\Gamma }}]\\{} & {} \qquad -{\mathcal {W}}^{c\!}({{\widetilde{g}}}\!)[{\widehat{\Gamma }}]\, {\widetilde{\partial }}_c{\widetilde{h}}_{ab} -{\widetilde{W}}_{2}^c[{\widetilde{H}},{\widehat{\Gamma }}]{\widetilde{\partial }}_c{\widetilde{m}}_{ab}\\{} & {} \quad ={\widetilde{F}}_{ab} ({{\widetilde{g}}}) [{\widetilde{\partial }}{\widetilde{g}},{\widetilde{\partial }}{\widetilde{g}}] -{\widetilde{F}}_{ab} ({\widetilde{m}}) [{\widetilde{\partial }}{\widetilde{m}}, {\widetilde{\partial }}{\widetilde{m}}] -{\widetilde{W}}_{ab}({\widetilde{h}},{\widetilde{m}}) [{\widetilde{h}},{\widehat{\Gamma }},{\widehat{\Gamma }}] +{\widetilde{T}}_{ab}, \end{aligned}$$

where

$$\begin{aligned} {\widetilde{W}}_c({\widetilde{h}},{\widetilde{m}})[{\widetilde{h}},{\widehat{\Gamma }}]&={\mathcal {W}}_c({{\widetilde{g}}})[{\widehat{\Gamma }}] -{\mathcal {W}}_c({\widetilde{m}})[{\widehat{\Gamma }}],\\ {\widetilde{W}}_{ab}({\widetilde{h}},{\widetilde{m}}) [{\widetilde{h}},{\widehat{\Gamma }},{\widehat{\Gamma }}]&={\mathcal {W}}_{ab}({{\widetilde{g}}})[{\widehat{\Gamma }},{\widehat{\Gamma }}] -{\mathcal {W}}_{ab}({\widetilde{m}})[{\widehat{\Gamma }},{\widehat{\Gamma }}]\\ {\mathcal {W}}^c({{\widetilde{g}}})[{\widehat{\Gamma }}]\,{\widetilde{\partial }}_c{\widetilde{h}}_{ab} +{\widetilde{W}}_{2}^c[{\widetilde{H}},{\widehat{\Gamma }}]{\widetilde{\partial }}_c{\widetilde{m}}_{ab}&={\mathcal {W}}^c({{\widetilde{g}}})[{\widehat{\Gamma }}]\, {\widetilde{\partial }}_c{\widetilde{g}}_{ab} -{\mathcal {W}}^c({\widetilde{m}})[{\widehat{\Gamma }}]\, {\widetilde{\partial }}_c{\widetilde{m}}_{ab}. \end{aligned}$$

Here \(W(\cdots )[u_1,\cdots ,u_k]\) stands for functions that are separately linear in each of the arguments \(u_1,\dots ,u_k\).

1.2 B.0.8. The Generalized Wave Coordinate Condition

We have

$$\begin{aligned} {\widetilde{\partial }}_a {{\widetilde{g}}}^{ac} -\tfrac{1}{2}{{\widetilde{g}}}^{ac} {{\widetilde{g}}}_{bd}\,{\widetilde{\partial }}_a {{\widetilde{g}}}^{bd} ={\mathcal {W}}^c({{\widetilde{g}}})[{\widehat{\Gamma }}] \end{aligned}$$

and in particular

$$\begin{aligned} {\widetilde{\partial }}_a {\widetilde{m}}^{ac} -\tfrac{1}{2}{\widetilde{m}}^{ac} {\widetilde{m}}_{bd}\, {\widetilde{\partial }}_a {\widetilde{m}}^{bd} ={\mathcal {W}}^c({\widetilde{m}})[{\widehat{\Gamma }}]. \end{aligned}$$

It follows that \({\widetilde{H}}^{ab}={{\widetilde{g}}}^{ab}-{\widetilde{m}}^{ab}\) satisfy

$$\begin{aligned} {\widetilde{\partial }}_a \big ({\widetilde{H}}^{ac} -\tfrac{1}{2}{\widetilde{m}}^{ac} {\widetilde{m}}_{bd}\, {\widetilde{H}}^{bd}\big ) ={\widetilde{W}}_1^c({\widetilde{m}},{\widetilde{H}})[{\widetilde{H}},{\widetilde{\partial }}{\widetilde{m}}] +{\widetilde{W}}_2^c({\widetilde{m}},{\widetilde{H}})[{\widetilde{H}},{\widetilde{\partial }}{\widetilde{H}}]. \end{aligned}$$

Appendix C. Additional Interior Asymptotics

1.1 C.0.9. Subtracting off a Better Approximation from the Homogeneous Wave Equation Picking up the Mass in the Exterior

We can get an improved approximation to the solution h of the homogeneous wave equation in the interior of the light cone by instead of having a cutoff which is a function of r/t have a cutoff which is a function of \(r^*-t\). This, however, only works in the wave equation but not in the solution of the wave coordinate condition H. This is not needed for the energy estimate and existence but only for more precise asymptotics in the interior, see [35] for the detailed proof. Here we just want to show how the error terms are under control because of the wave coordinate condition. One can use this and the other results in this paper to give a more direct proof of the asymptotics in [35].

Let \(\square ^*={\widehat{m}}^{ab}{\widetilde{\partial }}_a{\widetilde{\partial }}_b\) and

$$\begin{aligned} {\widetilde{h}}^{1\, e}_{ab}={\widetilde{h}}_{ab}-{\widetilde{h}}^{0\, e}_{ab},\qquad \text {where}\quad {\widetilde{h}}^{0\, e}_{ab}=\frac{M}{r^*} {\widetilde{\chi }}(r^*\!\!-t) \delta _{ab} \end{aligned}$$

We have

$$\begin{aligned} \square ^* {\widetilde{h}}^{0\, e}_{cd}=0 \end{aligned}$$

Moreover, with \(L^*_a={\widetilde{\partial }}_\alpha (r^{\!*}\!-t)\), \(\omega _0=0\), \(\omega _i=x_i/|x|\), for \(i\ge 1\) and and

Hence, with \(R=(0,\omega )\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauffman, C., Lindblad, H. Global Stability of Minkowski Space for the Einstein–Maxwell–Klein–Gordon System in Generalized Wave Coordinates. Ann. Henri Poincaré 24, 3837–3919 (2023). https://doi.org/10.1007/s00023-023-01331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01331-z

Navigation