Skip to main content
Log in

Rotation Numbers and Rotation Classes on One-Dimensional Tiling Spaces

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We extend rotation theory of circle maps to tiling spaces. Specifically, we consider a one-dimensional tiling space \(\Omega \) with finite local complexity and study self-maps F that are homotopic to the identity and whose displacements are strongly pattern equivariant. In place of the familiar rotation number, we define a cohomology class \([\mu ] \in {\check{H}}^1(\Omega , {\mathbb {R}})\). We prove existence and uniqueness results for this class, develop a notion of irrationality, and prove an analogue of Poincaré’s theorem: If \([\mu ]\) is irrational, then F is semi-conjugate to uniform translation on a space \(\Omega _\mu \) of tilings that is homeomorphic to \(\Omega \). In such cases, F is semi-conjugate to uniform translation on \(\Omega \) itself if and only if \([\mu ]\) lies in a certain subspace of \({\check{H}}^1(\Omega , {\mathbb {R}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The FLC condition is usually defined in terms of local patches, but in one dimension it is equivalent to simply having finitely many possible kinds of tiles.

  2. In the literature, “pattern equivariant” usually means sPE. The term “PE cohomology” was defined before the theory of wPE forms was developed.

  3. Note that \(\rho \) is a dimensionful quantity, having units of length. As such, the naive definition of \(\rho \) being an irrational number does not make sense.

  4. When f is \(C^2\) but \(f'\) is zero at isolated points, the argument is technically more complicated, but follows the same overall strategy.

  5. Applying the substitution \(\sigma \) recursively, one obtains a list of increasingly long words \(\sigma ^n(a)\) and \(\sigma ^n(b)\). The allowed bi-infinite words are those for which every finite sub-word is found in one of these n-times substituted letters.

  6. It is always possible to do a shape change to make all the tiles have integer length, so every tiling space is homeomorphic to a Cantor bundle over a circle. Moreover, every higher dimensional minimal FLC tiling space is homeomorphic to a Cantor bundle over a torus. [37].

References

  1. Anderson, J., Putnam, I.: Topological invariants for substitution tilings and their associated \(C^*\)-algebras. Ergodic Theory Dyn. Syst. 18, 509–537 (1998)

  2. Aliste-Prieto, J.: Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line. Ergodic Theory Dyn. Syst. 30(2), 565–594 (2010)

  3. Aliste-Prieto, J., Coronel, D., Gambaudo, J.-M.: Rapid convergence to frequency for substitution tilings of the plane. Commun. Math. Phys. 306, 365–380 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aliste-Prieto, J., Jäger, T.: Almost periodic structures and the semiconjugacy problem. J. Differ. Equ. 252(9), 4988–5001 (2012)

  5. Bellissard, J., Benedetti, R., Gambaudo, J.-M.: Spaces of tilings, finite telescopic approximations and gap-labelling. Commun. Math. Phys. 261, 1–41 (2006)

    Article  ADS  MATH  Google Scholar 

  6. Bellissard, J.: The gap-labeling theorems for schrödinger operators. In: Waldschmidt, M., Moussa, P., Luck, J.-M., Itzykson, C. (eds.) From Number Theory to Physics, pp. 538–630. Springer, Berlin (1992)

  7. Burdik, Č., Frougny, C., Gazeau, J.-P., Krejcar, R.: Beta-integers as natural counting systems for quasicrystals. J. Phys. A Math. Gen. 31, 6449–6472 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bellissard, J., Herrmann, D., Zarrouati, M.: Hulls of aperiodic solids and gap labeling theorems. In: Baake, MB., Moody, RV. (eds.) Directions in Mathematical Quasicrystals, vol. 13, pp. 207–259. CRM monograph series, AMS CRM (2000)

  9. Boulezaoud, H., Kellendonk, J.: Comparing different versions of tiling cohomology. Topol. Appl. 157, 2225–2239 (2010)

  10. Bellissard, J., Kellendonk, J., Legrand, A.: Gap labeling for three dimensional aperiodic solids. Comptes Rendus de l’Académie des Sciences, Series I(332), 521–525 (2001)

    MATH  Google Scholar 

  11. Bufetov, A.I., Solomyak, B.: Limit theorems for self-similar tilings. Commu. Math. Phys. 319, 761–789 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Clark, A.: The rotation class of a flow. Topol. Appl. 152, 201–208 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clark, A., Sadun, L.: When size matters: subshifts and their related tiling spaces. Ergodic Theory Dyn. Syst. 23, 1043–1057 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clark, A., Sadun, L.: When shape matters: deformations of tiling spaces. Ergodic Theory Dyn. Syst. 26, 69–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Denjoy, A.: Sur les courbes definies par les équations différentielles a la surface du tore. J. Math. Pures Appl. 11, 333–375 (1932)

    MATH  Google Scholar 

  16. Frank, N., Sadun, L.: Fusion: a general framework for hierarchical tilings of \({\mathbb{R}}^n\). Geom. Dedic. 171, 149–186 (2014)

    MATH  Google Scholar 

  17. Frank, N., Sadun, L.: Fusion tilings with infinite local complexity. Topol. Proceed. 43, 235–276 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Jäger, T.: Linearization of conservative toral homeomorphisms. Invent. Math. 176(3), 601–616 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84(3), 403–438 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Jäger, T., Stark, J.: Towards a classification for quasiperiodically forced circle homeomorphisms. J. Lond. Math. Soc. 73(3), 727–744 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Julien, A., Sadun, L.: Tiling deformations, cohomology, and orbit equivalence of tiling spaces. Ann. Henri Poincare 19, 3053–3088 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Julien, A.: Complexity as a homeomorphism invariant for tiling spaces. Ann. Inst. Fourier 62, 539–577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kellendonk, J.: Noncommutative geometry of tilings and gap-labelling. Rev. Math. Phys. 7, 1133–1180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kellendonk, J.: Pattern-equivariant functions and cohomology. J. Phys. A 36, 5765–5772 (2003)

  25. Kellondonk, J., Putnam, I.: The Ruelle-Sullivan map for \(r^n\)-actions. Math. Ann. 334, 693–711 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Kellendonk, J., Sadun, L.: Meyer sets, topological eigenvalues, and cantor fiber bundles. J. Lond. Math. Soc. 89, 114–130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kwapisz, J.: Poincaré rotation number for maps of the real line with almost periodic displacement. Nonlinearity 13, 841–854 (2000)

  28. Kwapisz, J.: Topological friction in aperiodic minimal rm-actions. Fund. Math 207(2), 175–178 (2010)

  29. Misiurewicz, M., Ziemian, K.: Rotation sets for maps of tori. J. Lond. Math. Soc. 2(3), 490–506 (1989)

  30. Penrose, R.: Pentaplexity a class of non-periodic tilings of the plane. Math. Intell. 2(1), 32–37 (1979)

    Article  MATH  Google Scholar 

  31. Poincaré, H.: Sur les courbes définies par les équations différentielles. J. Math. Pures App. 1, 167 (1885)

    MATH  Google Scholar 

  32. Sadun, L.: Pattern-equivariant cohomology with integer coefficients. Ergodic Theory Dyn. Syst. 27, 1991–1998 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sadun, L.: Exact regularity and the cohomology of tiling spaces. Ergodic Theory Dyn. Syst. 31, 1819–1834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sadun, L.: Cohomology of hierarchical tilings. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of Aperiodic Order, Chapter 3, pp. 73–104. Birkhauser, Basel (2015)

    Chapter  MATH  Google Scholar 

  35. Shechtman, D., Blech, I., Gratias, D., Cahn, J.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951 (1984)

    Article  ADS  Google Scholar 

  36. Schmieding, S., Trevino, R.: Self-affine delone sets and deviation phenomena. Commun. Math. Phys. 357, 1071–1112 (2018)

  37. Sadun, L., Williams, R.F.: Tiling spaces are cantor set fiber bundles. Ergodic Theory Dyn. Syst. 23, 307–316 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J.A.-P. acknowledges financial support from CONICYT FONDECYT REGULAR 1160975, CHILE. The authors thank Michael Baake, Alex Clark, Franz Gähler, Antoine Julien, Johannes Kellendonk, John Hunton, Jamie Walton, and Dan Rust for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Aliste-Prieto.

Additional information

Communicated by Dmitry Dolgopyat.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliste-Prieto, J., Rand, B. & Sadun, L. Rotation Numbers and Rotation Classes on One-Dimensional Tiling Spaces. Ann. Henri Poincaré 22, 2161–2193 (2021). https://doi.org/10.1007/s00023-021-01019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01019-2

Navigation