Skip to main content
Log in

Some Properties of Threshold Eigenstates and Resonant States of Discrete Schrödinger Operators

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider for discrete Schrödinger operators with dimension three or larger on the square lattice. We prove that the asymptotic behavior at infinity of resonances at elliptic thresholds is similar to those of continuous Schrödinger operators and that resonances are absent at hyperbolic thresholds. Moreover, we show the limiting absorption principle near the hyperbolic thresholds with the optimal weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)

    Google Scholar 

  2. Higuchi, Y., Nomura, Y., Ogurisu, O.: Persistent set of the threshold embedded eigenvalue for discrete Schrödinger operators with finite supported potentials. (In preparation)

  3. Ito, K., Jensen, A.: Branching form of the resolvent at threshold for ultra-hyperbolic operators and discrete Laplacians. J. Funct. Anal. 277(4), 965–993 (2019)

    Article  MathSciNet  Google Scholar 

  4. Isozaki, H., Morioka, H.: A Rellich type theorem for discrete Schrödinger operators. Inverse Probl. Imaging 8, 475–489 (2014)

    Article  MathSciNet  Google Scholar 

  5. Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of wave functions. Duke Math. J. 46, 583–611 (1979)

    Article  MathSciNet  Google Scholar 

  6. O’Neil, R.: Convolution operators and \(L(p, q)\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  7. Reed, M., Simon, B.: The Methods of Modern Mathematical Physics, vol. I–IV. Academic Press, London (1972–1980)

  8. Tadano, Y., Taira, K.: Uniform bounds of discrete Birman–Schwinger operators. Trans. Am. Math. Soc. 372, 5243–5262 (2019)

    Article  MathSciNet  Google Scholar 

  9. Yajima, K.: The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities I, odd dimensional case. J. Math. Sci. Univ. Tokyo 7, 43–93 (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

YN was supported by JSPS KAKENHI Grant Number 5K04960. KT was supported by JSPS Research Fellowship for Young Scientists, KAKENHI Grant Number 17J04478 and the program FMSP at the Graduate School of Mathematics Sciences, the University of Tokyo. KT would like to thank his supervisors Kenichi Ito and Shu Nakamura for encouraging to write this paper. The authors are very grateful to referees that they pointed out many mistakes, made us useful suggestions and gave us encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Taira.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Lorentz Space

For a measure space \((X,\mu )\), \(L^{p,r}(X,\mu )\) denotes the Lorentz space for \(1\le p\le \infty \) and \(1\le r\le \infty \):

$$\begin{aligned}&\Vert f\Vert _{L^{p,r}(X)}={\left\{ \begin{array}{ll} p^{\frac{1}{r}}\left( \int _0^{\infty }\mu (\{x\in X\,|\, |f(x)|>\alpha \})^{\frac{r}{p}} \alpha ^{r-1}\mathrm{d}\alpha \right) ^{\frac{1}{r}},\quad &{}r<\infty ,\\ \sup _{\alpha>0}\alpha \mu (\{x\in X\mid |f(x)|>\alpha \})^{\frac{1}{p}},\quad &{}r=\infty , \end{array}\right. }\\&L^{p,r}(X,\mu )=\{f:X\rightarrow {\mathbb {C}}\mid f:\text {measurable},\, \Vert f\Vert _{L^{p,r}(X)}<\infty \}. \end{aligned}$$

Moreover, we denote \(L^{p,r}({\mathbb {R}}^d)=L^{p,r}({\mathbb {R}}^d, \mu _L)\) and \(l^{p}_r({\mathbb {Z}}^d)=L^{p,r}({\mathbb {Z}}^d, \mu _c)\), where \(\mu _L\) is the Lebesgue measure on \({\mathbb {R}}^d\) and \(\mu _c\) is the counting measure on \({\mathbb {Z}}^d\). For a detail, see [1]. In this section, we state some fundamental properties of the Lorentz spaces. Note that \(L^{p,p}(X,\mu )=L^{p}(X)\).

Lemma A.1

(The Young inequalities in the Lorentz spaces). Let \(1<p_i<\infty \), \(1\le q_i\le \infty \) with \(\frac{1}{r}=\frac{1}{p_1}+\frac{1}{p_2}-1>0\) and \(s\ge 1\) with \(\frac{1}{q_1}+\frac{1}{q_2}\ge \frac{1}{s}\). Then, we have

$$\begin{aligned} \Vert f*g\Vert _{l^{r}_s({\mathbb {Z}}^d)}\le C\Vert f\Vert _{l^{p_1}_{q_1}({\mathbb {Z}}^d)}\Vert g\Vert _{l^{p_2}_{q_2}({\mathbb {Z}}^d)}. \end{aligned}$$

Lemma A.2

(The Hölder inequalities in the Lorentz spaces). If \(1\le p_1,p_2,q_1,q_2\le \infty \) and \(1\le r\le \infty \) satisfy

$$\begin{aligned} \frac{1}{p_1}+\frac{1}{p_2}=\frac{1}{r}<1, \end{aligned}$$

then

$$\begin{aligned} \Vert fg\Vert _{l^{r}_{\min (q_1,q_2)}({\mathbb {Z}}^d)}\le \Vert f\Vert _{l^{p_1}_{q_1}({\mathbb {Z}}^d)}\Vert g\Vert _{l^{p_2}_{q_2}({\mathbb {Z}}^d)}. \end{aligned}$$

For these proofs, see [6].

Appendix B: Harmonic Analysis

Proposition B.1

Let \(m\in C^{\infty }({\mathbb {R}}^d{\setminus }\{0\})\) be a function on \({\mathbb {R}}^d\) which is compactly supported, \(C^{\infty }\) for \(\xi \ne 0\) and satisfies for a \(0\le k<d\) that

$$\begin{aligned} |\partial _{\xi }^{\alpha }m(\xi )|\le C_{\alpha }|\xi |^{-k-|\alpha |},\quad x\in {\mathbb {R}}^d \end{aligned}$$
(B.1)

for \(|\alpha |\le d-k+1\). Then, if we set

$$\begin{aligned} I=\int _{{\mathbb {R}}^d}e^{-2\pi ix\cdot \xi }m(\xi )\mathrm{d}\xi , \end{aligned}$$

then \(|I|\le C\langle x \rangle ^{-d+k}\).

Proof

Since m is compactly supported, we may assume \(|x|\ge 1\). Take \(\chi \in C_c^{\infty }({\mathbb {R}}^d)\) such that \(\chi =1\) on \(|\xi |\le 1\) and \(\chi =0\) on \(|\xi |\ge 2\). Set \({\bar{\chi }}=1-\chi \). For \(\delta >0\), we have

$$\begin{aligned} I=\int _{{\mathbb {R}}^d}(\chi (\xi /\delta )+{\bar{\chi }}(\xi /\delta ))e^{-2\pi ix\cdot \xi }m(\xi )\mathrm{d}\xi =:I_1+I_2. \end{aligned}$$

Since m is integrable on \({\mathbb {R}}^d\), we have

$$\begin{aligned} |I_1|\le \int _{|\xi |\le 2\delta }|\chi (\xi /\delta )||\xi |^{-k}\mathrm{d}\xi \le C\delta ^{d-k}. \end{aligned}$$

By integrating by parts, for \(N> d-k\), we have

$$\begin{aligned} |I_2|&\le C|x|^{-N}\sum _{|\alpha |= N}\left| \int _{{\mathbb {R}}^d}e^{-2\pi ix\cdot \xi } D_{\xi }^{\alpha }({\bar{\chi }}(\xi /\delta )m(\xi )) \mathrm{d}\xi \right| \\&\le C|x|^{-N}\sum _{|\alpha |= N}\left| \sum _{\beta \le \alpha }\int _{{\mathbb {R}}^d}e^{-2\pi ix\cdot \xi } D_{\xi }^{\beta }({\bar{\chi }}(\xi /\delta ))\partial _{\xi }^{\alpha -\beta }m(\xi ) \mathrm{d}\xi \right| \\&\le C|x|^{-N}\sum _{|\alpha |\le N}\sum _{\beta \le \alpha }\int _{{\mathbb {R}}^d} \delta ^{-|\beta |}{\bar{\chi }}^{(\beta )}(\xi /\delta )|\xi |^{-k-(N-|\beta |)} \mathrm{d}\xi . \end{aligned}$$

For \(\beta =0\),

$$\begin{aligned} \int _{{\mathbb {R}}^d}{\bar{\chi }}(\xi /\delta )|\xi |^{-k-N}\mathrm{d}\xi \le C\delta ^{d-k-N} \end{aligned}$$

follows and for \(\beta \ne 0\),

$$\begin{aligned} \int _{{\mathbb {R}}^d} \delta ^{-|\beta |}{\bar{\chi }}^{(\beta )}(\xi /\delta )|\xi |^{-k-(N-|\beta |)} \mathrm{d}\xi&\le C\int _{\delta \le |\xi |\le 2\delta }\delta ^{-|\beta |}|\xi |^{-k-N+|\beta |}\mathrm{d}\xi \\&\le C\delta ^{d-k-N}. \end{aligned}$$

These imply \(|I_2|\le C|x|^{-N}\delta ^{d-k-N}\). We set \(\delta =|x|^{-1}\) and obtain \(|I|\le C|x|^{-d+k}\) for \(|x|\ge 1\). \(\square \)

Corollary B.2

Let \(d\ge 1\), \(0<l<d\) and \(K_{l}\) be defined by

$$\begin{aligned} K_l(x)=\int _{{\mathbb {T}}^d}e^{2\pi ix{{\dot{\xi }}}}h_0(\xi )^{-l/2}\mathrm{d}\xi . \end{aligned}$$

Then, we have a pointwise bound \(|K_l(x)|\le C\langle x \rangle ^{-d+l}\).

Proof

By the Morse lemma, we have \(|\partial _{\xi }^{\alpha }h_0(\xi )^{-l/2}|\le C_{\alpha }|\xi |^{-l-|\alpha |}\) near \(\xi =0\) for any multi-index \(\alpha \). Moreover, it follows that \(h_0(\xi )^{-l/2}\) is smooth away from \(\xi =0\). Applying Proposition B.1, we obtain \(|K_l(x)|\le C\langle x \rangle ^{-d+l}\). \(\square \)

Now we define operators \(H_0^{-l/2}\) for \(0<l<d\) by

$$\begin{aligned} H_0^{-l/2}u(x)=\sum _{y\in {\mathbb {Z}}^d}K_l(x-y)u(y),\,\, u\in \bigcap _{s>0}l^{2,s}({\mathbb {Z}}^d). \end{aligned}$$

It is easily seen that \(H_0^{-l/2}\) is a continuous linear operator:

$$\begin{aligned} H_0^{-l/2}:\bigcap _{s>0}l^{2,s}({\mathbb {Z}}^d)\rightarrow \bigcup _{s\in {\mathbb {R}}}l^{2,s}({\mathbb {Z}}^d). \end{aligned}$$

The next corollary implies that \(H_0^{-1}\) can be uniquely extended to the continuous linear operator from \(l^{2,\alpha }({\mathbb {Z}}^d)\) to \(l^{2,-\beta }({\mathbb {Z}}^d)\) for \(\alpha ,\beta >1/2\) with \(\alpha +\beta \ge 2\).

Corollary B.3

(Discrete version of the HLS inequality). Let \(d\ge 1\) and \(0<l<d\). Then, \(H_0^{-l/2}\) is bounded from \(l^{p}_r({\mathbb {Z}}^d)\) to \(l^{q}_r({\mathbb {Z}}^d)\) if \(1< p< q < \infty \) satisfies

$$\begin{aligned} \frac{1}{p}-\frac{1}{q}=\frac{l}{d} \end{aligned}$$
(B.2)

and \(1\le r\le \infty \).

Moreover, if \(W_1\in l^{r_1}_{\infty }({\mathbb {Z}}^d)\) and \(W_2\in l^{r_2}_{\infty }({\mathbb {Z}}^d)\) with \(1/r_1+1/r_2=l/d\) with \(r_1,r_2>2\). Then, we have

$$\begin{aligned} W_1H_0^{-l/2}W_2\in B(l^2({\mathbb {Z}}^d)). \end{aligned}$$

In particular, \(\langle x \rangle ^{-\alpha }H_0^{-1}\langle x \rangle ^{-\beta }\in B(l^2({\mathbb {Z}}^d))\) if \(\alpha +\beta \ge 2\) and \(\alpha ,\beta >0\) if \(d\ge 4\) and \(\alpha +\beta \ge 2\) and \(\alpha ,\beta >1/2\) if \(d=3\).

Remark B.4

This corollary gives \(H_0^{-l/2}\langle x \rangle ^{-l}\in B(l^2({\mathbb {Z}}^d))\) for \(0<l<d\). In fact,

$$\begin{aligned} \left\| H_0^{-l/2}\langle x \rangle ^{-l}f\right\| _{l^2({\mathbb {Z}}^d)}\le C\left\| H_0^{-l/2}\right\| _{B\left( l^{\frac{2l}{l+2d}}_{\infty }({\mathbb {Z}}^d), l^2({\mathbb {Z}}^d)\right) } \Vert \langle x \rangle ^{-l}\Vert _{l^{\frac{d}{l}}_{\infty }({\mathbb {Z}}^d)} \Vert f\Vert _{l^2({\mathbb {Z}}^d)}. \end{aligned}$$

These are exactly the discrete Hardy inequalities.

Appendix C: Restriction Theorem for a Lipschitz Manifold

In this appendix, we prove the \(L^2\)-restriction theorem for a Lipschitz manifold. Its proof is standard; however, we give its proof for readers’ convenience.

Lemma C.1

Let \(f\in H^{1}({\mathbb {R}}^d)\) and g be a real-valued Lipschitz function on \({\mathbb {R}}^{d-1}\). Then, it follows that \(k(\xi )=f(\xi ', \xi _d+g(\xi '))\) belongs to \(H^1({\mathbb {R}}^d)\) and there exists \(C>0\) which depends only on the dimension d and \(\Vert \partial _{\xi }g\Vert _{L^{\infty }({\mathbb {R}}^d)}\) such that

$$\begin{aligned} \Vert k\Vert _{H^1({\mathbb {R}}^d)}\le C\Vert f\Vert _{H^1({\mathbb {R}}^d)}. \end{aligned}$$
(C.1)

Proof

It is evident that \(\Vert k\Vert _{L^2({\mathbb {R}}^d)}=\Vert f\Vert _{L^2({\mathbb {R}}^d)}\). For \(j=1,\dots d-1\), we have

$$\begin{aligned} \partial _{\xi _j}(k(\xi ',\xi _d+g(\xi ')))&=(\partial _{\xi _j}k)(\xi ',\xi _d+g(\xi '))+(\partial _{\xi _j}g)(\xi ')(\partial _{\xi _d}k)(\xi ',\xi _d+g(\xi ')),\\ \partial _{\xi _d}(k(\xi ',\xi _d+g(\xi ')))&=(\partial _{\xi _d}k)(\xi ',\xi _d+g(\xi ')). \end{aligned}$$

Using this computation, we obtain (C.1). \(\square \)

Proposition C.2

Under the assumption of Lemma C.1, we have

$$\begin{aligned} \Vert \langle D_{\xi '} \rangle ^{1/2}(f(\xi ', g(\xi ')))\Vert _{L^2({\mathbb {R}}^{d-1})}\le C\Vert f\Vert _{H^1({\mathbb {R}}^d)}. \end{aligned}$$

Proof

In the following, we denote the Fourier transform of f by \({\hat{f}}\). By using Fourier inversion formula and by using Schwarz’s inequality, we have

$$\begin{aligned} \left| \int _{{\mathbb {R}}^{d-1}}f(\xi ',g(\xi '))e^{-2\pi ix'\cdot \xi '}\mathrm{d}\xi '\right|&=\left| \int _{{\mathbb {R}}^d} {\hat{k}}(x)\mathrm{d}x_d\right| \\&\le \left( \int _{{\mathbb {R}}}\langle x \rangle ^{-2}\mathrm{d}x_d\right) ^{1/2} \left( \int _{{\mathbb {R}}}|\langle x \rangle {\hat{k}}(x)|^2\mathrm{d}x_d\right) ^{1/2}\\&\le C\langle x' \rangle ^{-1/2}\left( \int _{{\mathbb {R}}}|\langle x \rangle {\hat{k}}(x)|^2\mathrm{d}x_d\right) ^{1/2}. \end{aligned}$$

Thus, we have

$$\begin{aligned} \Vert \langle D_{\xi '} \rangle ^{1/2}(f(\xi ', g(\xi ')))\Vert _{L^2({\mathbb {R}}^{d-1})}^2&=\Vert \langle x' \rangle ^{1/2}\widehat{f(\xi ',g(\xi '))}(x)\Vert _{L^2({\mathbb {R}}^{d-1})}^2\\&\le C^2\Vert \langle x \rangle {\hat{k}}\Vert _{L^2({\mathbb {R}}^d)}^2\\&=C^2\Vert k\Vert _{H^1({\mathbb {R}}^d)}^2. \end{aligned}$$

This computation with Lemma C.1 completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, Y., Taira, K. Some Properties of Threshold Eigenstates and Resonant States of Discrete Schrödinger Operators. Ann. Henri Poincaré 21, 2009–2030 (2020). https://doi.org/10.1007/s00023-020-00912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00912-6

Mathematics Subject Classification

Navigation