Skip to main content
Log in

Eigenvalue and Resonance Asymptotics in Perturbed Periodically Twisted Tubes: Twisting Versus Bending

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider a three-dimensional waveguide that is a small deformation of a periodically twisted tube (including in particular the case of a straight tube). The deformation is given by a bending and an additional twisting of the tube, both parametrized by a coupling constant \(\delta \). In this deformed waveguide, we consider the Dirichlet Laplacian. We expand its resolvent near the bottom of its essential spectrum, and we show the existence of exactly one resonance, in the asymptotic regime of \(\delta \) small. We are able to perform the asymptotic expansion of the resonance in \(\delta \), which in particular permits us to give a quantitative geometric criterion for the existence of a discrete eigenvalue below the essential spectrum. In the case of perturbations of straight tubes, we are able to show the existence of resonances not only near the bottom of the essential spectrum but near each threshold in the spectrum, showing in particular what are the spectral effects of the bending for higher energies. We also obtain the asymptotic behavior of the resonances in this situation, which is generically different from the first case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This notation is in agreement with the notation introduced in (7).

References

  1. Bakharev, F.L., Exner, P.: Geometrically induced spectral effects in tubes with a mixed Dirichlet–Neumann boundary. Rep. Math. Phys. 81(2), 213–231 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bony, J.-F., Bruneau, V., Raikov, G.: Resonances and spectral shift function near the Landau levels. Ann. Inst. Fourier 57(2), 629–672 (2007)

    Article  MathSciNet  Google Scholar 

  3. Briet, P., Hammedi, H., Krejčiřík, D.: Hardy inequalities in globally twisted waveguides. Lett. Math. Phys. 105, 939–958 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Briet, P., Kovařík, H., Raikov, G., Soccorsi, E.: Eigenvalue asymptotics in a twisted waveguide. Commun. Partial Differ. Equ. 34(7–9), 818–836 (2009)

    Article  MathSciNet  Google Scholar 

  5. Briet, P., Kovařík, H., Raikov, G.D.: Scattering in twisted waveguides. J. Funct. Anal. 266, 1–35 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bruneau, V., Miranda, P., Popoff, N.: Resonances near thresholds in slightly twisted waveguides. Proc. Am. Math. Soc. 146(11), 4801–4812 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chenaud, B., Duclos, P., Freitas, P., Krejčiřík, D.: Geometrically induced discrete spectrum in curved tubes. Differ. Geom. Appl. 23(2), 95–105 (2005)

    Article  MathSciNet  Google Scholar 

  8. Clark, I.J., Bracken, A.J.: Bound states in tubular quantum waveguides with torsion. J. Phys. A Math. Gen. 29(15), 4527 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Duclos, P., Exner, P., Meller, B.: Exponential bounds on curvature-induced resonances in a two-dimensional Dirichlet tube. Helv. Phys. Acta 71(2), 133–162 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7(1), 73–102 (1995)

    Article  MathSciNet  Google Scholar 

  11. Ekholm, T., Kovařík, H., Krejčiřík, D.: A hardy inequality in twisted waveguides. Arch. Ration. Mech. Anal. 188(2), 245–264 (2008)

    Article  MathSciNet  Google Scholar 

  12. Exner, P., Kovařík, H.: Quantum Waveguides. Theoretical and Mathematical Physics. Springer, Berlin (2015)

    Book  Google Scholar 

  13. Exner, P., Kovařík, H.: Spectrum of the Schrödinger operator in a perturbed periodically twisted tube. Lett. Math. Phys. 73(3), 183–192 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Froese, R.: Asymptotic distribution of resonances in one dimension. J. Differ. Equ. 137(2), 251–272 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Grushin, V.V.: On the eigenvalues of finitely perturbed laplace operators in infinite cylindrical domains. Math. Notes 75(3–4), 331–340 (2004)

    Article  MathSciNet  Google Scholar 

  16. Grushin, V.V.: Asymptotic behavior of the eigenvalues of the Schrödinger operator with transversal potential in a weakly curved infinite cylinder. Math. Notes 77, 606–613 (2005)

    Article  MathSciNet  Google Scholar 

  17. Krejčiřík, D.: Twisting versus bending in quantum waveguides. In: Exner, P., Keating, J.P., Kuchment, P., Teplyaev, A., Sunada, t. (eds.) Analysis on Graphs and Its Applications, volume 77 of Proceedings of Symposium on Pure Mathematics, pp. 617–637. American Mathematical Society, Providence, RI (2008)

  18. Krejčiřík, D., Šediváková, H.: The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions. Rev. Math. Phys. 24(7), 1250018, 39 (2012)

    Article  MathSciNet  Google Scholar 

  19. Melrose, R.B.: Geometric Scattering Theory. Stanford Lectures. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  20. Nazarov, S.A.: Scattering anomalies in a resonator above the thresholds of the continuous spectrum. Mat. Sb. 206(6), 15–48 (2015)

    Article  MathSciNet  Google Scholar 

  21. Nedelec, L.: Sur les résonances de l’opérateur de dirichlet dans un tube. Commun. Partial Differ. Equ. 22(1–2), 143–163 (1997)

    Article  MathSciNet  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. III. Scattering Theory. Bulletin of the American Mathematical Society, vol. 2, pp. 0273–0979 (1980)

  23. Simon, B.: Resonances in one dimension and Fredholm determinants. J. Funct. Anal. 178(2), 396–420 (2000)

    Article  MathSciNet  Google Scholar 

  24. Uhlenbeck, K.: Generic properties of eigenfunctions. Am. J. Math. 98(4), 1059–1078 (1976)

    Article  MathSciNet  Google Scholar 

  25. Yafaev, D.R.: Mathematical Scattering Theory, volume 105 ofTranslations of Mathematical Monographs. American Mathematical Society, Providence, RI (1992) (General theory, Translated from theRussian by J. R. Schulenberger)

  26. Zworski, M.: Distribution of poles for scattering on the real line. J. Funct. Anal. 73(2), 277–296 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Popoff.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Some Explicit Expansions

Appendix A: Some Explicit Expansions

1.1 A.1: The Perturbation as a Second-Order Differential Operator

In this appendix, we give some explicit computations that are straightforward. For simplicity, we set \(\xi (s):=\tau (s)-\epsilon (s)-\beta \). Also, it is easy to see that \(h(s,t)=1-\kappa (s)(t_2\cos (\theta (s))+t_3\sin (\theta (s)))\) satisfies

$$\begin{aligned} (\partial _\varphi h)(s,t)=\kappa (s)(t_3\cos (\theta (s))-t_2\sin (\theta (s)))=:{\tilde{h}}(s,t)\ \text { and } \partial _\varphi {\tilde{h}}=1-h. \end{aligned}$$

With this, we can start computing an expression for W. Here we systematically use the notation \({\dot{f}}=\partial _s f\) and \({\tilde{f}}=\partial _\varphi f\). By definition, we have

$$\begin{aligned} W=-\frac{\kappa ^2}{4h^2}-(h^{-\frac{1}{2}}(\partial _s+\xi \partial _\varphi )h^{-\frac{1}{2}})^2+\partial _s^2-2\beta \partial _s\partial _\varphi +\beta ^2\partial _\varphi ^2\ . \end{aligned}$$

Noticing that

$$\begin{aligned} h^{-\frac{1}{2}}(\partial _s+\xi \partial _\varphi )h^{-\frac{1}{2}}=\frac{1}{h}\partial _s+\frac{\xi }{h}\partial _\varphi -\frac{{\dot{h}}+\xi {\tilde{h}}}{2h^2}, \end{aligned}$$

we get

$$\begin{aligned}&\left( h^{-\frac{1}{2}}(\partial _s+\xi \partial _\varphi )h^{-\frac{1}{2}}\right) ^2\\&\quad = \frac{1}{h^2}\partial _s^2-\frac{{\dot{h}}}{h^3}\partial _s+\frac{\xi }{h^2}\partial _s\partial _\varphi +\left( \frac{{\dot{\xi }}}{h^2}-\frac{\xi {\dot{h}}}{h^3}\right) \partial _\varphi -\frac{{\dot{h}}+\xi {\tilde{h}}}{2h^3}\partial _s\\&\qquad -\frac{\ddot{h}+{\dot{\xi }}{\tilde{h}}+\xi \dot{{\tilde{h}}}}{2h^3}+\frac{{\dot{h}}^2+\xi {\tilde{h}}{\dot{h}}}{h^4} \\&\qquad +\frac{\xi }{h^2}\partial _s\partial _\varphi -\frac{\xi {\tilde{h}}}{h^3}\partial _s +\frac{\xi ^2}{h^2}\partial _\varphi ^2-\frac{\xi ^2{\tilde{h}}}{h^3}\partial _\varphi -\frac{\xi {\dot{h}}+\xi ^2{\tilde{h}}}{2h^3}\partial _\varphi \\&\qquad -\frac{\xi \dot{{\tilde{h}}}+\xi ^2(1-h)}{2h^3}+\frac{\xi {\dot{h}}{\tilde{h}}+\xi ^2{\tilde{h}}^2}{h^4}\\&\qquad -\frac{{\dot{h}}+\xi {\tilde{h}}}{2h^3}\partial _s-\frac{\xi {\dot{h}}+\xi ^2{\tilde{h}}}{2h^3}\partial _\varphi +\frac{{\dot{h}}^2}{4h^4}+\frac{\xi {\dot{h}}{\tilde{h}}}{2h^4}+\frac{\xi ^2{\tilde{h}}^2}{4h^4}. \end{aligned}$$

Then, writing

$$\begin{aligned} W=f_{0,0}+f_{1,0}\partial _s+f_{0,1}\partial _\varphi +f_{1,1}\partial _s\partial _\varphi +f_{2,0}\partial _s^2+f_{0,2}\partial _\varphi ^2 \end{aligned}$$
(48)

we obtain

$$\begin{aligned} f_{0,0}&=-\frac{\kappa ^2}{4h^2}+\frac{\ddot{h}}{2h^3}+\frac{{{\dot{\xi }}}{\tilde{h}}}{2h^3}+\frac{\xi \dot{{\tilde{h}}}}{h^3}-\frac{5{\dot{h}}^2}{4h^4}-\frac{5\xi {\tilde{h}}{\dot{h}}}{2h^4}+\frac{\xi ^2(1-h)}{2h^3}-\frac{5\xi ^2{\tilde{h}}^2}{4h^4};\\ f_{1,0}&=\frac{2{\dot{h}}}{h^3}+\frac{2\xi {\tilde{h}}}{h^3};\\ f_{0,1}&=\frac{2\xi {\dot{h}}}{h^3}+\frac{2\xi ^2{\tilde{h}}}{h^3}-\frac{{\dot{\xi }}}{h^2};\\ f_{1,1}&=-2\beta -\frac{2\xi }{h^2};\\ f_{2,0}&=1-\frac{1}{h^2};\\ f_{0,2}&=\beta ^2-\frac{\xi ^2}{h^2}. \end{aligned}$$

1.2 A.2: Asymptotics of the Coefficient in the Perturbative Regime

We are now interested in the asymptotic behavior of \(\langle \eta \otimes \psi _n|\eta ^{-1}W_\delta \psi _n\rangle =\langle \psi _n|W_\delta \psi _n\rangle \) as \(\delta \rightarrow 0\). For this, we need to make appear the \(\delta \)-dependence in the previous expressions. We set \(\xi _\delta (s)=\delta \tau (s)-\delta \epsilon (s)-\beta \) and introduce the auxiliary function \(\Xi _\delta (s):=\xi _\delta (s)+\beta =\delta \tau (s)-\delta \epsilon (s)=:\delta \Xi (s)\). Furthermore, setting \(E(s)=\int _{-\infty }^s\epsilon (s)\mathrm{d}s\) we get the expression \(\theta _\delta (s)=\beta s+\delta E(s)\). Before studying \(\langle \psi _n|W_\delta \psi _n\rangle \), we need the asymptotic behavior of \(h_\delta (s,t)=1-\delta \kappa (s)(t_2\cos (\theta _\delta (s))+t_3\sin (\theta _\delta (s)))\) given by

$$\begin{aligned} h_\delta =1+\delta g_1+\delta ^2 g_2+O(\delta ^3) \end{aligned}$$
(49)

where

$$\begin{aligned} \begin{aligned} g_1(s,t)&=-\kappa (s)(t_2\cos (\beta s)+t_3\sin (\beta s)),\\ g_2(s,t)&=-\kappa (s)E(s)(-t_2\sin (\beta s)+t_3\cos (\beta s))\ .\end{aligned} \end{aligned}$$
(50)

We will also need the fact that:

$$\begin{aligned} h_\delta ^{-1}&=1-g_1\delta +(g_1^2-g_2)\delta ^2+{\mathcal {O}}(\delta ^3);\\ h_\delta ^{-2}&=1-2g_1\delta +(3g_1^2-2g_2)\delta ^2+{\mathcal {O}}(\delta ^3);\\ h_\delta ^{-n}&=1-ng_1\delta +O(\delta ^2). \end{aligned}$$

The relation \(\partial _\varphi h={\tilde{h}}\) gives the corresponding asymptotic for \({\tilde{h}}_\delta \)

$$\begin{aligned} {\tilde{h}}_\delta ={\tilde{g}}_1\delta +{\tilde{g}}_2\delta ^2+O(\delta ^3), \end{aligned}$$

where \({\tilde{g}}_i=\partial _\varphi g_i\).

Lemma 16

Under the assumptions of decay of \(\kappa ,\tau ,\varepsilon \) and its derivatives (see (9)), we have the following asymptotic:

$$\begin{aligned} \langle \psi _n|W_\delta \psi _n\rangle =\breve{\mu }_{1,n}\delta +\breve{\mu }_{2,n}\delta ^2+O(\delta ^3) . \end{aligned}$$
(51)

The constant \(\breve{\mu }_{1,n}\) is given by

$$\begin{aligned} \breve{\mu }_{1,n}=2\beta \Vert \partial _\varphi \psi _n\Vert ^2 \int _{\mathbb {R}}\varepsilon -\tau +\beta ^2\int _{{\mathbb {R}}\times \omega } \kappa (\tfrac{1}{2}|\psi _n|^2+2|\partial _\varphi \psi _n|^2)\vartheta , \end{aligned}$$
(52)

where \(\vartheta (s,t)\) is given by

$$\begin{aligned} \vartheta (s,t):=(t_2\cos (\beta s)+t_3\sin (\beta s)). \end{aligned}$$
(53)

Assume, moreover, that \(\beta =0\). Then, \(\breve{\mu }_{1,n}=0\) and \(\breve{\mu }_{2,n}\) is given by

$$\begin{aligned} \breve{\mu }_{2,n}=-\left\| \frac{\kappa }{2}\right\| ^2+\left\| \frac{{\dot{\kappa }}}{2}t_2\psi _n+(\tau -\varepsilon )\partial _\varphi \psi _n\right\| ^2. \end{aligned}$$
(54)

Proof

In order to compute the differential operator in the r.h.s. of (48) applied to \(\psi _n\), since \(\partial _s \psi _n=0\), we only need the expansions of \(f_{0,j}\) for \(j\in \{0,1,2\}\):

$$\begin{aligned} f_{0,0}(\delta )=&\,\left( -\frac{\kappa ^2}{4}\delta ^2 +O(\delta ^3)\right) +\left( \frac{\ddot{g}_1}{2}\delta +\frac{\ddot{g}_2-3g_1{\ddot{g}_1}}{2}\delta ^2+O(\delta ^3) \right) +\left( \frac{{\dot{\Xi }}{\tilde{g}}_1}{2}\delta ^2+O(\delta ^3) \right) \\&+\,\left( -\beta \dot{{\tilde{g}}}_1\delta +(3\beta g_1\dot{{\tilde{g}}}_1-\beta \dot{{\tilde{g}}}_2+\dot{{\tilde{g}}}_1\Xi )\delta ^2+O(\delta ^3) \right) +\left( \frac{-5{\dot{g}}_1^2}{4}\delta ^2+O(\delta ^3) \right) \\&+\,\left( \frac{5\beta {\dot{g}}_1{\tilde{g}}_1}{2}\delta ^2+O(\delta ^3) \right) +\left( \frac{-\beta ^2g_1}{2}\delta +\frac{\beta ^2(3g_1^2-g_2)+2\beta \Xi g_1}{2}\delta ^2+O(\delta ^3) \right) \\&+\,\left( \frac{-5\beta ^2{\tilde{g}}_1^2}{4}\delta ^2+O(\delta ^3) \right) \ . \end{aligned}$$

This in turn gives

$$\begin{aligned} f_{0,0}(\delta )=&\,\left( \frac{\ddot{g}_1}{2}-\frac{\beta ^2g_1}{2}-\beta \dot{{\tilde{g}}}_1\right) \delta +\Bigg [\frac{1}{2}\left( \ddot{g}_2-3g_1{\ddot{g}_1}+{\dot{\Xi }}{\tilde{g}}_1+5\beta {\dot{g}}_1{\tilde{g}}_1+\beta ^2(3g_1^2-g_2)\right) \\&-\,\frac{5}{4}\left( \beta ^2{\tilde{g}}_1^2+{\dot{g}}_1^2\right) +\beta \Xi g_1+3\beta g_1\dot{{\tilde{g}}}_1-\beta \dot{{\tilde{g}}}_2+\Xi \dot{{\tilde{g}}}_1-\frac{\kappa ^2}{4}\bigg ]\delta ^2+O(\delta ^3). \end{aligned}$$

The higher-order terms are

$$\begin{aligned} f_{0,1}(\delta )=&\,\left( 2\beta ^2{\tilde{g}}_1-2\beta {\dot{g}}_1-{\dot{\Xi }}\right) \delta \\&+\,\left( 2\Xi {\dot{g}}_1+2{\dot{\Xi }}g_1-4\beta \Xi {\tilde{g}}_1-2\beta {\dot{g}}_2+6\beta g_1{\dot{g}}_1+2\beta ^2{\tilde{g}}_2-6\beta ^2g_1{\tilde{g}}_1)\right) \delta ^2+O(\delta ^3) \end{aligned}$$

and

$$\begin{aligned} f_{0,2}(\delta )=(2\beta \Xi +2\beta ^2g_1)\delta -\left( \Xi ^2+4\beta \Xi g_1+\beta ^2(3g_1^2-2g_2)\right) \delta ^2+O(\delta ^3) \end{aligned}$$

Let us now compute \(\breve{\mu }_{1,n}\) when \(\beta \ne 0\). Notice that for any function \({\mathbb {R}}\times \omega \ni (s,t)\rightarrow F(s,t)\) such that \({\dot{F}}(\cdot ,t)\) is integrable for every \(t\in \omega \), we have \(\langle {\dot{F}}\psi _n,\psi _n\rangle =0\) for every \(1\le n\le \infty \). Therefore, we have

$$\begin{aligned} \langle \psi _n|f_{0,0}\psi _n\rangle= & {} -\,\frac{1}{2}\beta ^2\delta \int _{{\mathbb {R}}\times \omega } g_1 \psi _n^2+O(\delta ^2) \ \text{ and } \ \langle \psi _n|f_{0,1}\partial _\varphi \psi _n\rangle \\= & {} 2\beta ^2\delta \int _{{\mathbb {R}}\times \omega } {\tilde{g}}_1(\partial _\varphi \psi _n) \psi _n+O(\delta ^2). \end{aligned}$$

An integration by parts provides

$$\begin{aligned} \langle \psi _n|f_{0,2}\partial ^2_\varphi \psi _n\rangle =&\,\int _{{\mathbb {R}}\times \omega }2\delta \beta \Xi (\partial ^2_\varphi \psi _n)\psi _n+2\delta \beta ^2g_1\partial ^2_\varphi \psi _n \psi _n+O(\delta ^2)\\ =&\,-\int _{{\mathbb {R}}\times \omega }2\delta \beta \Xi (\partial _\varphi \psi _n)^2+2\delta \beta ^2\left( {\tilde{g}}_1(\partial _\varphi \psi _n) \psi _n+g_1(\partial _\varphi \psi _n)^2\right) +O(\delta ^2). \end{aligned}$$

Combining these results, we get

$$\begin{aligned} \langle \psi _n,W_\delta \psi _n\rangle =\left( \frac{-\beta ^2}{2}\int _{{\mathbb {R}}\times \omega } g_1 |\psi _n|^2-2\int _{{\mathbb {R}}\times \omega }(\beta \Xi +\beta ^2g_1)|\partial _\varphi \psi _n|^2\right) \delta +O(\delta ^2).\nonumber \\ \end{aligned}$$
(55)

from where one easily deduces the expression for \(\breve{\mu }_{1,n}\).

Assume now that \(\beta =0\). It is clear from (55) that \(\mu _{1,n}=0\). Let us now compute the expression of \(\mu _{2,n}\). We have

$$\begin{aligned} \langle \psi _n |f_{0,0} \psi _n \rangle =&\,\delta ^2\int _{{\mathbb {R}}\times \omega } \left( -\frac{\kappa ^2}{4}-\frac{3}{2}g_1 \ddot{g_1}+\left( \frac{1}{2}{\dot{\Xi }}\tilde{g_1}+\Xi \dot{\tilde{g_1}}\right) -\frac{5}{4}\dot{g_1}^2\right) \psi _n ^2+O(\delta ^3)\nonumber \\ =&\,\delta ^2\int _{{\mathbb {R}}\times \omega } \left( -\frac{\kappa ^2}{4}+\frac{1}{4}\dot{g_1}^2+\frac{1}{2}{\Xi } \dot{\tilde{g_1}}\right) \psi _n ^2+O(\delta ^3) \end{aligned}$$
(56)

where we have used an integration by parts in s and that \(\int _{{\mathbb {R}}} {\dot{\Xi }}\tilde{g_1}+\dot{\tilde{g_1}}\Xi =0\). Moreover,

$$\begin{aligned} \langle \psi _n | f_{0,1}\partial _\varphi \psi _n \rangle ={\mathcal {O}}(\delta ^3) \ \text{ and } \ \langle f_{0,2}\partial ^2_\varphi \psi _n |\psi _n \rangle =\delta ^2\int _{{\mathbb {R}}\times \omega } \Xi ^2 (\partial _\varphi \psi _n)^2+O(\delta ^3).\nonumber \\ \end{aligned}$$
(57)

Combining (56) and (57) and integrating by parts, we deduce \(\breve{\mu }_{2,n}\) by

$$\begin{aligned} \langle \psi _n |W_\delta \psi _n \rangle =&\,\delta ^2\int _{{\mathbb {R}}\times \omega } -\frac{\kappa ^2}{4}\psi _n ^2+\frac{1}{4}\dot{g_1}^2\psi _n ^2-{\Xi } \dot{g_1}(\partial _\varphi \psi _n)\psi _n +\Xi ^2 (\partial _\varphi \psi _n)^2+O(\delta ^3)\\ =&\,\delta ^2\left( -\left\| \frac{\kappa }{2}\right\| ^2+\int _{{\mathbb {R}}\times \omega }\left( \frac{{\dot{g}}_1\psi _n}{2}\right) ^2-{\Xi } \dot{g_1}(\partial _\varphi \psi _n)\psi _n +(\Xi \partial _\varphi \psi _n)^2\right) +O(\delta ^3)\\ =&\,\delta ^2\left( -\left\| \frac{\kappa }{2}\right\| ^2+\int _{{\mathbb {R}}\times \omega }\left( \frac{{\dot{g}}_1\psi _n}{2}-\Xi \partial _\varphi \psi _n\right) ^2\right) +O(\delta ^3). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruneau, V., Miranda, P., Parra, D. et al. Eigenvalue and Resonance Asymptotics in Perturbed Periodically Twisted Tubes: Twisting Versus Bending. Ann. Henri Poincaré 21, 377–403 (2020). https://doi.org/10.1007/s00023-019-00865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00865-5

Mathematics Subject Classification

Navigation