Skip to main content
Log in

Integrability of Anti-Self-Dual Vacuum Einstein Equations with Nonzero Cosmological Constant: An Infinite Hierarchy of Nonlocal Conservation Laws

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We present an infinite hierarchy of nonlocal conservation laws for the Przanowski equation, an integrable second-order PDE locally equivalent to anti-self-dual vacuum Einstein equations with nonzero cosmological constant. The hierarchy in question is constructed using a nonisospectral Lax pair for the equation under study. As a by product, we obtain an infinite-dimensional differential covering over the Przanowski equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that an equation is called differentially connected if the only functions that are invariant with respect to all total derivatives on \(\mathscr {E}\) are constants.

References

  1. Ablowitz, M., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Alexandrov, S., Pioline, B., Vandoren, S.: Self-dual Einstein spaces, heavenly metrics, and twistors. J. Math. Phys. 51, 073510 (2010). arXiv:0912.3406

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M., Dunajski, M., Mason, L.J.: Twistor theory at fifty: from contour integrals to twistor strings. Proc. R. Soc. A 473, no. 2206, art. 20170530 (2017)

  4. Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Baran, H., Blaschke, P., Krasil’shchik, I.S., Marvan, M.: On symmetries of the Gibbons–Tsarev equation. J. Geom. Phys. (to appear). https://doi.org/10.1016/j.geomphys.2019.05.011. arXiv:1811.08199

  6. Baran, H., Krasil’shchik, I.S., Morozov, O.I., Vojčák, P.: Nonlocal symmetries of integrable linearly degenerate equations: a comparative study. Theor. Math. Phys. 196(2), 1089–1110 (2018). arXiv:1611.04938

    Article  MathSciNet  MATH  Google Scholar 

  7. Bocharov, A.V. et al.: Symmetries of differential equations in mathematical physics and natural sciences. In: Vinogradov, A.M., Krasil’shchik, I.S. (eds.), Factorial Publ. House, 1997 (in Russian). English translation: Amer. Math. Soc. (1997)

  8. Bull, P., et al.: Beyond \(\Lambda \)CDM: problems, solutions, and the road ahead. Phys. Dark Univ. 12, 56–99 (2016). arXiv:1512.05356

    Article  Google Scholar 

  9. Burtsev, S.P., Zakharov, V.E., Mikhailov, A.V.: Inverse scattering method with variable spectral parameter. Theor. Math. Phys. 70(3), 227–240 (1987)

    Article  MATH  Google Scholar 

  10. Calogero, F.: Why are certain nonlinear PDEs both widely applicable and integrable? In: Zakharov, V.E. (ed.) What is Integrability?, pp. 1–62. Springer, Berlin (1991)

    Google Scholar 

  11. Dunajski, M.: Solitons, Instantons, and Twistors. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  12. Hoegner, M.: Quaternion-Kähler four-manifolds and Przanowski’s function. J. Math. Phys. 53, 103517 (2012). arXiv:1205.3977

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Konopelchenko, B.G.: Nonlinear Integrable Equations. Recursion Operators, Group-Theoretical and Hamiltonian Structures of Soliton Equations. Springer, Berlin (1987)

    MATH  Google Scholar 

  14. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  15. Krasil’shchik, I.S.: A natural geometric construction underlying a class of Lax pairs. Lobachevskii J. Math. 37(1), 61–66 (2016). arXiv:1401.0612

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasil’shchik, I.S.: Integrability in differential coverings. J. Geom. Phys. 87, 296–304 (2015). arXiv:1310.1189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Krasil’shchik, I.S., Sergyeyev, A.: Integrability of \(S\)-deformable surfaces: conservation laws, Hamiltonian structures and more. J. Geom. Phys. 97, 266–278 (2015). arXiv:1501.07171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Krasil’shchik, I.S., Sergyeyev, A., Morozov, O.I.: Infinitely many nonlocal conservation laws for the \(ABC\) equation with \(A+B+C\ne 0\). Calc. Var. PDE 55, 1–12 (2016). arXiv:1511.09430

    Article  Google Scholar 

  19. Krasil’shchik, I.S., Vinogradov, A.M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 15(1–2), 161–209 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krasil’shchik, J., Verbovetsky, A., Vitolo, R.: The Symbolic Computation of Integrability Structures for Partial Differential Equations. Springer, Texts & Monographs in Symbolic Computation (2017)

  21. Krasnov, K.: Self-dual gravity. Class. Quantum Grav. 34, 095001 (2017). arXiv:1610.01457

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lelito, A., Morozov, O.I.: Three-component nonlocal conservation laws for Lax-integrable 3D partial differential equations. J. Geom. Phys. 131, 89–100 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Makridin, Z.: An effective algorithm for finding multidimensional conservation laws for integrable systems of hydrodynamic type. Theor. Math. Phys. 194(2), 274–283 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Manakov, S.V., Santini, P.M.: Integrable dispersionless PDEs arising as commutation condition of pairs of vector fields. J. Phys. Conf. Ser. 482, 012029 (2014). arXiv:1312.2740

    Article  Google Scholar 

  25. Mason, L.J., Woodhouse, N.M.J.: Integrability, Self-Duality, and Twistor Theory. Clarendon & Oxford Univ. Press, New York (1996)

    MATH  Google Scholar 

  26. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204–1209 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Morozov, O.I., Sergyeyev, A.: The four-dimensional Martínez Alonso–Shabat equation: reductions and nonlocal symmetries. J. Geom. Phys. 85, 40–45 (2014). arXiv:1401.7942

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  29. Plebański, J.F.: Some solutions of complex Einstein equations. J. Math. Phys. 16(12), 2395–2402 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  30. Przanowski, M.: Locally Hermit-Einstein, self-dual gravitational instantons. Acta Phys. Polon. B 14, 625–627 (1983)

    MathSciNet  Google Scholar 

  31. Sergyeyev, A.: A simple construction of recursion operators for multidimensional dispersionless integrable systems. J. Math. Anal. Appl. 454(2), 468–480 (2017). arXiv:1501.01955

    Article  MathSciNet  MATH  Google Scholar 

  32. Sergyeyev, A.: New integrable (3+1)-dimensional systems and contact geometry. Lett. Math. Phys. 108(2), 359–376 (2018). arXiv:1401.2122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Sheftel, M.B., Malykh, A.A.: Partner symmetries, group foliation and ASD Ricci-flat metrics without Killing vectors. SIGMA 9, 075 (2013). arXiv:1306.3195

    MathSciNet  MATH  Google Scholar 

  34. Strachan, I.A.B.: The symmetry structure of the anti-self-dual Einstein hierarchy. J. Math. Phys. 36, 3566–3573 (1995). arXiv:hep-th/9410047

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Witten, E.: Integrable lattice models from gauge theory. Adv. Theor. Math. Phys. 21(7), 1819–1843 (2017). arXiv:1611.00592

    Article  MathSciNet  MATH  Google Scholar 

  36. Zakharov, V.E., Integrable systems in multidimensional spaces. In: Mathematical Problems in Theoretical Physics (Berlin, 1981), pp. 190–216. Springer, Berlin (1982)

  37. Zakharov, V.E., Dispersionless limit of integrable systems in 2+1 dimensions. In: Singular Limits of Dispersive Waves (Lyon, 1991), pp. 165–174. Plenum, New York (1994)

Download references

Acknowledgements

The work of IK was partially supported by the RFBR Grant 18-29-10013 and IUM-Simons Foundation. The research of AS was supported in part by the Ministry of Education, Youth and Sport of the Czech Republic (MŠMT ČR) under RVO funding for IČ47813059 and the Grant Agency of the Czech Republic (GA ČR) under grant P201/12/G028. AS is pleased to thank A. Borowiec, M. Dunajski and K. Krasnov for stimulating discussions. AS also warmly thanks the Institute of Theoretical Physics of the University of Wrocław, and especially A. Borowiec, for the warm hospitality extended to him in the course of his visits to Wrocław, where some parts of the present article were worked on. It is our great pleasure to thank the anonymous referee for useful and relevant comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sergyeyev.

Additional information

Communicated by Nikolai Kitanine.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasil’shchik, I., Sergyeyev, A. Integrability of Anti-Self-Dual Vacuum Einstein Equations with Nonzero Cosmological Constant: An Infinite Hierarchy of Nonlocal Conservation Laws. Ann. Henri Poincaré 20, 2699–2715 (2019). https://doi.org/10.1007/s00023-019-00816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00816-0

Navigation