Skip to main content
Log in

On the Separation of Variables for the Modular XXZ Magnet and the Lattice Sinh-Gordon Models

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We construct the generalised eigenfunctions of the entries of the monodromy matrix of the N-site modular XXZ magnet and show, in each case, that these form a complete orthogonal system in \(L^2(\mathbb {R}^N)\). In particular, we develop a new and simple technique, allowing one to prove the completeness of such systems. As a corollary of our analysis, we prove the Bytsko–Teschner conjecture relative to the structure of the spectrum of the \( \varvec{ \texttt {B} } (\lambda )\)-operator for the odd length lattice Sinh-Gordon model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babelon, O., Kozlowski, K.K., Pasquier, V.: Baxter Operator and Baxter Equation for q-Toda and Toda 2 Chains., Ludwig Faddeev Memorial Volume. World Scientific, Singapore (2018)

    MATH  Google Scholar 

  2. Bazhanov, V., Mangazeev, V., Sergeev, S.: Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry. Nucl. Phys. B 784(3), 234–258 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bazhanov, V., Mangazeev, V., Sergeev, S.: Exact solution of the Faddeev–Volkov model. Phys. Lett. A 372(10), 1547–1550 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bytsko, A.G., Teschner, J.: R-operator, co-product and Haar-measure for the modular double of \(U_q({\mathfrak{sl}}(2, R))\). Commun. Math. Phys. 240, 171–196 (2003)

    Article  ADS  MATH  Google Scholar 

  5. Bytsko, A.G., Teschner, J.: Quantization of models with non-compact quantum group symmetry. Modular XXZ magnet and lattice sinh-Gordon model. J. Phys. A 39, 12927–12982 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chicherin, D., Derkachov, S.: The R-operator for a modular double. J. Phys. A Math. Theor. 47, 115203 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chicherin, D., Derkachov, S., Karakhanyan, D., Kirschner, R.: Baxter operators with deformed symmetry. Nucl. Phys. B 868, 652–683 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Derkachov, S.E.: Baxter’s Q-operator for the homogeneous XXX spin chain. J. Phys. A 32, 5299–5316 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Derkachov, S.E., Korchemsky, G.P., Manashov, A.N.: Noncompact Heisenberg spin magnets from high-energy QCD: I. Baxter Q-operator and separation of variables. Nucl. Phys. B 617, 375–440 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Derkachov, S.E., Korchemsky, G.P., Manashov, A.N.: Separation of variables for the quantum SL(2,R) spin chain. JHEP 0307, 047 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Derkachov, S.E., Manashov, A.N.: Iterative construction of eigenfunctions of the monodromy matrix for SL(2,\(\mathbb{C}\)) magnet. J. Phys. A Math. Gen. 47, 305204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gaudin, M., Pasquier, V.: The periodic Toda chain and a matrix generalization of the Bessel function recursion relations. J. Phys. A 25, 5243–5252 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gerasimov, A., Kharchev, S., Lebedev, D.: Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model., Int. Math. Res. Notices (2004)

  14. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. AMS Trans. (2) 180, 103–115 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Gutzwiller, M.C.: The quantum mechanical Toda lattice. Ann. Phys. 124, 347–387 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kashaev, R.: The Quantum Dilogarithm and Dehn Twists in Quantum Teichmüller Theory. In: Pakuliak, S., von Gehlen, G. (eds.) Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory. NATO Science Series. (Series II: Mathematics, Physics and Chemistry), vol. 35, pp. 211–221. Springer, Dordrecht (2001)

    Chapter  Google Scholar 

  17. Kashaev, R.: The Yang-Baxter relation and gauge invariance., J. Phys. A 49, 164001, 16pp (2006)

  18. Kharchev, S., Lebedev, D.: Eigenfunctions of \(GL(N,\mathbb{R})\) Toda chain: The Mellin–Barnes representation. JETP Lett. 71, 235–238 (2000)

    Article  ADS  Google Scholar 

  19. Kharchev, S., Lebedev, D.: Integral representations for the eigenfunctions of quantum open and periodic Toda chains from QISM formalism. J. Phys. A 34, 2247–2258 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kharchev, S., Lebedev, D., Semenov-Tian-Shansky, M.: Unitary representations of \(U_q({\mathfrak{sl}}(2,\mathbb{R}))\), the modular double and the multiparticle \(q\)-deformed Toda chains. Commun. Math. Phys. 225, 573–609 (2002)

    Article  ADS  MATH  Google Scholar 

  21. Kozlowski, K.K.: Aspects of the inverse problem for the Toda chain. J. Math. Phys. 54, 121902 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kozlowski, K.K.: Unitarity of the SoV transform for the Toda chain. Commun. Math. Phys. 334(1), 223–273 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Niccoli, G., Terras, V.: The eight-vertex model with quasi-periodic boundary conditions., J. Phys. A: Math. Theor. 49, 044001, 37pp (2016)

  24. Niccoli, G., Teschner, J.: The Sine-Gordon model revisited I. J. Stat. Mech. 1009, P09014 (2010)

    MathSciNet  Google Scholar 

  25. Schrader, G., Shapiro, A.: On b-Whittaker functions., math-ph:1806.00747

  26. Silantyev, A.V.: Transition function for the Toda chain. Theor. Math. Phys. 150, 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sklyanin, E.K.: The quantum Toda chain. Lect. Notes Phys. 226, 196–233 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sklyanin, E.K., Sklyanin, E.K.: Functional Bethe Ansatz. In: Kupershmidt, B. (ed.) Integrable and Superintegrable Theories, pp. 8–33. World Scientific, Singapore (1990)

    Chapter  Google Scholar 

  29. Sklyanin, E.K.: Quantum Inverse Scattering Method. Selected Topics. In: Ge, M.-L. (ed.) Quantum Group and Quantum Integrable Systems” (Nankai Lectures in Mathematical Physics), pp. 63–97. World Scientific, Singapore (1992)

    Google Scholar 

  30. Takhtadzhan, L.A., Faddeev, L.: The spectral theory of a functional-difference operator in conformal field theory. Izv. Math. 79(2), 388–410 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wallach, N.R.: Real Reductive Groups II. Pure and Applied Mathematics, vol. 132-II. Academic Press, Cambridge (1992)

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to J.M.-Maillet for stimulating discussions. The work of S.D. is supported by the RFBR grant no. 17-01-00283a. K.K.K. acknowledges support from CNRS and ENS de Lyon. A. M. acknowledges support from the DFG grant MO 1801/1-3. S.D. would like to thank the Laboratoire de physique of ENS de Lyon for hospitality during his visit there where this work was initiated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol K. Kozlowski.

Additional information

Communicated by Nikolai Kitanine.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Main Notations

  • N-dimensional vectors are denoted as \(\varvec{x}_N=(x_1,\dots , x_N)\);

  • \(N-1\) dimensional vectors built from an N-dimensional vector \(\varvec{x}_N\) with the removed \(m^{\mathrm {th}}\) coordinate are denoted as \(\varvec{x}_{N;[m]}\) and read

    $$\begin{aligned} \varvec{x}_{N;[m]} \, = \, \big ( x_1,\dots , x_{m-1},x_{m+1},\dots , x_N \big ) \;. \end{aligned}$$
    (238)
  • Given an N-dimensional vector \(\varvec{x}_N\), we denote

    $$\begin{aligned} \overline{\varvec{x}}_N=\sum \limits _{a=1}^{N}x_a \; . \end{aligned}$$
    (239)
  • Ratios of products of one variable functions appearing with multi-component entries are denoted using the hypergeometric notations, e.g.

    $$\begin{aligned} f\left( \begin{array}{cc} a_1,\dots , a_n \\ b_1,\dots , b_m \end{array}\right) \, = \, { \mathchoice{\dfrac{ \prod \nolimits _{k=1}^{n} f(a_k) }{\prod \nolimits _{k=1}^{m} f(b_k) }}{\dfrac{ \prod \nolimits _{k=1}^{n} f(a_k) }{\prod \nolimits _{k=1}^{m} f(b_k) }}{\frac{ \prod \nolimits _{k=1}^{n} f(a_k) }{\prod \nolimits _{k=1}^{m} f(b_k) }}{\frac{ \prod \nolimits _{k=1}^{n} f(a_k) }{\prod \nolimits _{k=1}^{m} f(b_k) }} } \;. \end{aligned}$$
    (240)
  • Given indexed symbols \(x_{a},x_{b}\), we denote \(x_{ab}=x_a-x_b\).

  • Given \(y \in \mathbb {C}\), \(y^*\) stands for its complex conjugate and \(y^{\star }=-y-{\mathrm i}\tfrac{\Omega }{2}\).

Appendix B. Properties of the Auxiliary Special Functions

1.1 B.1. The Quantum Dilogarithm and the \(D_{\alpha }\) Functions

The quantum dilogarithm \(\varpi \) is a meromorphic function on \(\mathbb {C}\) which admits the integral representation

$$\begin{aligned} \varpi (\lambda ) \; = \; \exp \Bigg \{ \pm { \mathchoice{\dfrac{ {\mathrm i}\pi }{ 2 \omega _1 \omega _2 }}{\dfrac{ {\mathrm i}\pi }{ 2 \omega _1 \omega _2 }}{\frac{ {\mathrm i}\pi }{ 2 \omega _1 \omega _2 }}{\frac{ {\mathrm i}\pi }{ 2 \omega _1 \omega _2 }} } \cdot \Big ( \lambda ^2 \,+\, { \mathchoice{\dfrac{ \omega ^2_1+\omega ^2_2 }{ 12 }}{\dfrac{ \omega ^2_1+\omega ^2_2 }{ 12 }}{\frac{ \omega ^2_1+\omega ^2_2 }{ 12 }}{\frac{ \omega ^2_1+\omega ^2_2 }{ 12 }} } \Big ) \; - \; {\mathrm i}\int \limits _{ \mathbb {R}\pm {\mathrm i}0^+}^{} { \mathchoice{\dfrac{ \mathrm {d}t }{ 4 t }}{\dfrac{ \mathrm {d}t }{ 4 t }}{\frac{ \mathrm {d}t }{ 4 t }}{\frac{ \mathrm {d}t }{ 4 t }} } { \mathchoice{\dfrac{ \mathrm {e}^{-2{\mathrm i}\lambda t} }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }}{\dfrac{ \mathrm {e}^{-2{\mathrm i}\lambda t} }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }}{\frac{ \mathrm {e}^{-2{\mathrm i}\lambda t} }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }}{\frac{ \mathrm {e}^{-2{\mathrm i}\lambda t} }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }} } \Bigg \} \;, \end{aligned}$$
(241)

valid for \(|\mathfrak {I}(\lambda )| \, < \, \Omega /2\).

This function is self-dual and satisfies the first-order finite-difference equations

$$\begin{aligned} \varpi \big (\lambda +{\mathrm i}\omega _2\big )= & {} 2{\mathrm i}\sinh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\tau }{2}}{\dfrac{\tau }{2}}{\frac{\tau }{2}}{\frac{\tau }{2}} } \big ) \Big ] \cdot \varpi (\lambda )\nonumber \\&\quad \mathrm {and} \quad \varpi \big (\lambda +{\mathrm i}\omega _1\big ) \, = \, 2{\mathrm i}\sinh \Big [ { \mathchoice{\dfrac{\pi }{\omega _2}}{\dfrac{\pi }{\omega _2}}{\frac{\pi }{\omega _2}}{\frac{\pi }{\omega _2}} }\big (\lambda - {\mathrm i}{ \mathchoice{\dfrac{\tau }{2}}{\dfrac{\tau }{2}}{\frac{\tau }{2}}{\frac{\tau }{2}} } \big ) \Big ] \cdot \varpi (\lambda ) \;. \nonumber \\ \end{aligned}$$
(242)

From there, one entails that

$$\begin{aligned}&\varpi \Big (\lambda -{\mathrm i}\tfrac{ \Omega }{ 2 } + {\mathrm i}\ell \omega _1 + {\mathrm i}k \omega _2 \Big ) = (-1)^{k\ell } \big ( -2{\mathrm i}\big )^{\ell + k} \cdot \prod \limits _{p=0}^{k-1} \sinh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda + {\mathrm i}p \omega _2 \big ) \Big ] \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \quad \times \prod \limits _{p=0}^{\ell -1} \sinh \Big [ { \mathchoice{\dfrac{\pi }{\omega _2}}{\dfrac{\pi }{\omega _2}}{\frac{\pi }{\omega _2}}{\frac{\pi }{\omega _2}} }\big (\lambda + {\mathrm i}p \omega _1 \big ) \Big ] \cdot \varpi \Big (\lambda -{\mathrm i}\tfrac{ \Omega }{ 2 } \Big ) \nonumber \\ \end{aligned}$$
(243)

and symmetrically,

$$\begin{aligned}&\varpi \Big (\lambda -{\mathrm i}\tfrac{ \Omega }{ 2 } - {\mathrm i}\ell \omega _1 - {\mathrm i}k \omega _2 \Big ) = (-1)^{k\ell } \Big ( { \mathchoice{\dfrac{{\mathrm i}}{2}}{\dfrac{{\mathrm i}}{2}}{\frac{{\mathrm i}}{2}}{\frac{{\mathrm i}}{2}} } \Big )^{\ell + k} \cdot \prod \limits _{p=1}^{k} \Big \{ \sinh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda - {\mathrm i}p \omega _2 \big ) \Big ] \Big \}^{-1} \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \quad \times \prod \limits _{p=1}^{\ell } \Big \{ \sinh \Big [ { \mathchoice{\dfrac{\pi }{\omega _2}}{\dfrac{\pi }{\omega _2}}{\frac{\pi }{\omega _2}}{\frac{\pi }{\omega _2}} }\big (\lambda - {\mathrm i}p \omega _1 \big ) \Big ] \Big \}^{-1} \cdot \varpi \Big (\lambda -{\mathrm i}\tfrac{ \Omega }{ 2 } \Big ) \;. \nonumber \\ \end{aligned}$$
(244)

The quantum dilogarithm has only simple poles and zeroes. These are located at

$$\begin{aligned}&\varpi (x)=0 \quad \mathrm {iff} \quad x \in {\mathrm i}{ \mathchoice{\dfrac{\Omega }{2}}{\dfrac{\Omega }{2}}{\frac{\Omega }{2}}{\frac{\Omega }{2}} } + {\mathrm i}\mathbb {N} \omega _1+ {\mathrm i}\mathbb {N} \omega _2\nonumber \\&\qquad \mathrm {and} \varpi ^{-1}(x)=0 \quad \mathrm {iff} \quad x \in -{\mathrm i}{ \mathchoice{\dfrac{\Omega }{2}}{\dfrac{\Omega }{2}}{\frac{\Omega }{2}}{\frac{\Omega }{2}} } - {\mathrm i}\mathbb {N} \omega _1 - {\mathrm i}\mathbb {N} \omega _2. \end{aligned}$$
(245)

\(\varpi \) satisfies the inversion identity \(\varpi (\lambda )\varpi (-\lambda )=1\) and \(\big (\varpi (\lambda ^*)\big )^*=\varpi ^{-1}(\lambda )\). One can also establish that

$$\begin{aligned} \mathrm {Res}\Big (\varpi \big ( \lambda - {\mathrm i}\tfrac{\Omega }{2}\big ) \cdot \mathrm {d}\lambda , \lambda =0 \Big ) \, = \, { \mathchoice{\dfrac{{\mathrm i}}{2\pi }}{\dfrac{{\mathrm i}}{2\pi }}{\frac{{\mathrm i}}{2\pi }}{\frac{{\mathrm i}}{2\pi }} } \sqrt{\omega _1 \omega _2} \qquad \mathrm {and} \qquad \varpi ( \tfrac{{\mathrm i}}{2} \tau ) \; = \; \sqrt{ { \mathchoice{\dfrac{\omega _2}{\omega _1 }}{\dfrac{\omega _2}{\omega _1 }}{\frac{\omega _2}{\omega _1 }}{\frac{\omega _2}{\omega _1 }} } } \;. \end{aligned}$$
(246)

The above entails that, for \((k,\ell )\in \mathbb {N}^2\),

$$\begin{aligned}&\mathrm {Res}\Big (\varpi \big ( \lambda - {\mathrm i}\tfrac{\Omega }{2}\big ) \cdot \mathrm {d}\lambda , \lambda \nonumber \\&\quad =-{\mathrm i}\ell \omega _1 -{\mathrm i}k \omega _2 \Big ) \, = \, { \mathchoice{\dfrac{{\mathrm i}}{2 \pi }}{\dfrac{{\mathrm i}}{2 \pi }}{\frac{{\mathrm i}}{2 \pi }}{\frac{{\mathrm i}}{2 \pi }} } \sqrt{\omega _1 \omega _2} (-1)^{k\ell } \Big ( { \mathchoice{\dfrac{ 1 }{2 {\mathrm i}}}{\dfrac{ 1 }{2 {\mathrm i}}}{\frac{ 1 }{2 {\mathrm i}}}{\frac{ 1 }{2 {\mathrm i}}} } \Big )^{\ell + k} \nonumber \\&\qquad \times \bigg \{ \prod \limits _{p=1}^{k} \sinh \Big [ {\mathrm i}p \pi { \mathchoice{\dfrac{ \omega _2 }{\omega _1}}{\dfrac{ \omega _2 }{\omega _1}}{\frac{ \omega _2 }{\omega _1}}{\frac{ \omega _2 }{\omega _1}} } \Big ] \cdot \prod \limits _{p=1}^{\ell } \sinh \Big [ {\mathrm i}p \pi { \mathchoice{\dfrac{\omega _1 }{\omega _2}}{\dfrac{\omega _1 }{\omega _2}}{\frac{\omega _1 }{\omega _2}}{\frac{\omega _1 }{\omega _2}} } \Big ] \bigg \}^{-1} \;. \end{aligned}$$
(247)

The function \(D_{\alpha }\) is defined by the below ratio of dilogarithms

$$\begin{aligned} D_{\alpha }(\lambda ) \; = \; { \mathchoice{\dfrac{\varpi (\lambda +\alpha ) }{ \varpi (\lambda -\alpha ) }}{\dfrac{\varpi (\lambda +\alpha ) }{ \varpi (\lambda -\alpha ) }}{\frac{\varpi (\lambda +\alpha ) }{ \varpi (\lambda -\alpha ) }}{\frac{\varpi (\lambda +\alpha ) }{ \varpi (\lambda -\alpha ) }} } \qquad \mathrm {so}\; \mathrm {that} \qquad D_{\alpha }(\lambda ) \, = \, \Big ( D_{-\alpha ^*}(\lambda ^*) \Big )^* \;. \end{aligned}$$
(248)

The function \(D_{\alpha }\) is a meromorphic function on \(\mathbb {C}\) that admits a holomorphic determination of the logarithm on

$$\begin{aligned} \mathcal {S}_{ { \mathchoice{\dfrac{\Omega }{2}}{\dfrac{\Omega }{2}}{\frac{\Omega }{2}}{\frac{\Omega }{2}} }-|\mathfrak {I}(\alpha )| }(\mathbb {R}) \; = \; \Big \{ \lambda \in \mathbb {C}\, : \, \big | \mathfrak {I}(\lambda ) \big | \; < \; { \mathchoice{\dfrac{1}{2}}{\dfrac{1}{2}}{\frac{1}{2}}{\frac{1}{2}} } \Big ( \omega _1 \, + \, \omega _2 \Big ) - \, \big | \mathfrak {I}(\alpha ) \big | \Big \} \end{aligned}$$
(249)

given by

$$\begin{aligned} \ln D_{\alpha }(\lambda ) \; = \; \mp { \mathchoice{\dfrac{ 2 {\mathrm i}\pi }{ \omega _1 \omega _2 }}{\dfrac{ 2 {\mathrm i}\pi }{ \omega _1 \omega _2 }}{\frac{ 2 {\mathrm i}\pi }{ \omega _1 \omega _2 }}{\frac{ 2 {\mathrm i}\pi }{ \omega _1 \omega _2 }} } \alpha \lambda \; + \; {\mathrm i}\int \limits _{ \mathbb {R}\pm {\mathrm i}0^+}^{} { \mathchoice{\dfrac{ \mathrm {d}t }{ 2 t }}{\dfrac{ \mathrm {d}t }{ 2 t }}{\frac{ \mathrm {d}t }{ 2 t }}{\frac{ \mathrm {d}t }{ 2 t }} } { \mathchoice{\dfrac{ \mathrm {e}^{2{\mathrm i}\lambda t} \sin (2\alpha t ) }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }}{\dfrac{ \mathrm {e}^{2{\mathrm i}\lambda t} \sin (2\alpha t ) }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }}{\frac{ \mathrm {e}^{2{\mathrm i}\lambda t} \sin (2\alpha t ) }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }}{\frac{ \mathrm {e}^{2{\mathrm i}\lambda t} \sin (2\alpha t ) }{ \sinh \big (t\omega _1 \big ) \cdot \sinh \big (t\omega _2 \big ) }} } \;. \end{aligned}$$
(250)

The function \(D_{\alpha }(\lambda )\) satisfies the properties

  • \(D_{\alpha }(\lambda )\) is self-dual, namely invariant under the exchange \(\omega _1\leftrightarrow \omega _2\);

  • for \(\omega _2>\omega _1\) it admits the asymptotic behaviours

    $$\begin{aligned} D_{\alpha }(\lambda )= & {} \mathrm {e}^{ \mp { \mathchoice{\dfrac{ 2 {\mathrm i}\pi }{ \omega _1\omega _2}}{\dfrac{ 2 {\mathrm i}\pi }{ \omega _1\omega _2}}{\frac{ 2 {\mathrm i}\pi }{ \omega _1\omega _2}}{\frac{ 2 {\mathrm i}\pi }{ \omega _1\omega _2}} } \cdot \lambda \alpha }\cdot \left( 1 \; + \; \mathrm {O}\Big ( \mathrm {e}^{ \mp { \mathchoice{\dfrac{ 2\pi }{ \omega _2 }}{\dfrac{ 2\pi }{ \omega _2 }}{\frac{ 2\pi }{ \omega _2 }}{\frac{ 2\pi }{ \omega _2 }} } \lambda } \sinh \Big [ { \mathchoice{\dfrac{2\pi }{ \omega _2}}{\dfrac{2\pi }{ \omega _2}}{\frac{2\pi }{ \omega _2}}{\frac{2\pi }{ \omega _2}} } \alpha \Big ] \Big ) \right) \nonumber \\&\quad \mathrm {when} \quad \lambda \rightarrow \infty \; , \; \; |\arg (\pm \lambda )| \, < \, { \mathchoice{\dfrac{\pi }{2}}{\dfrac{\pi }{2}}{\frac{\pi }{2}}{\frac{\pi }{2}} } ; \end{aligned}$$
    (251)
  • \(D_{\alpha }(\lambda )\) satisfies the difference equation

    $$\begin{aligned} { \mathchoice{\dfrac{D_{\alpha }(\lambda +{\mathrm i}\omega _2)}{D_{\alpha }(\lambda ) }}{\dfrac{D_{\alpha }(\lambda +{\mathrm i}\omega _2)}{D_{\alpha }(\lambda ) }}{\frac{D_{\alpha }(\lambda +{\mathrm i}\omega _2)}{D_{\alpha }(\lambda ) }}{\frac{D_{\alpha }(\lambda +{\mathrm i}\omega _2)}{D_{\alpha }(\lambda ) }} } \; = \; { \mathchoice{\dfrac{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }+\alpha \big ) \Big ] }{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }-\alpha \big ) \Big ] }}{\dfrac{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }+\alpha \big ) \Big ] }{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }-\alpha \big ) \Big ] }}{\frac{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }+\alpha \big ) \Big ] }{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }-\alpha \big ) \Big ] }}{\frac{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }+\alpha \big ) \Big ] }{ \cosh \Big [ { \mathchoice{\dfrac{\pi }{\omega _1}}{\dfrac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}}{\frac{\pi }{\omega _1}} }\big (\lambda +{\mathrm i}{ \mathchoice{\dfrac{\omega _2}{2}}{\dfrac{\omega _2}{2}}{\frac{\omega _2}{2}}{\frac{\omega _2}{2}} }-\alpha \big ) \Big ] }} } \end{aligned}$$
    (252)

    as well as its dual \(\omega _1\leftrightarrow \omega _2\);

  • \(D_{\alpha }(\lambda )\) enjoys the transmutation properties

    $$\begin{aligned} D_{\alpha }\Big ( \lambda \mp {\mathrm i}\tfrac{\omega _2}{2} \Big ) \, = \, { \mathchoice{\dfrac{ D_{\alpha - {\mathrm i}\frac{\omega _2}{2} }\big ( \lambda \big ) }{ 2 \cosh \Big [\frac{\pi }{\omega _1}(\lambda \pm \alpha ) \Big ] }}{\dfrac{ D_{\alpha - {\mathrm i}\frac{\omega _2}{2} }\big ( \lambda \big ) }{ 2 \cosh \Big [\frac{\pi }{\omega _1}(\lambda \pm \alpha ) \Big ] }}{\frac{ D_{\alpha - {\mathrm i}\frac{\omega _2}{2} }\big ( \lambda \big ) }{ 2 \cosh \Big [\frac{\pi }{\omega _1}(\lambda \pm \alpha ) \Big ] }}{\frac{ D_{\alpha - {\mathrm i}\frac{\omega _2}{2} }\big ( \lambda \big ) }{ 2 \cosh \Big [\frac{\pi }{\omega _1}(\lambda \pm \alpha ) \Big ] }} } \;; \end{aligned}$$
    (253)
  • \(D_{\alpha }(\lambda )\) has simple zeroes at

    $$\begin{aligned} \pm \Big \{ -\alpha \, + \, {\mathrm i}{ \mathchoice{\dfrac{\Omega }{2}}{\dfrac{\Omega }{2}}{\frac{\Omega }{2}}{\frac{\Omega }{2}} }\, + \, {\mathrm i}n \omega _1 \, + \, {\mathrm i}m \omega _2\; : \; (n,m) \in \mathbb {N}^2 \Big \} \; ; \end{aligned}$$
    (254)
  • \(D_{\alpha }(\lambda )\) has simple poles at

    $$\begin{aligned} \pm \Big \{ \alpha \, + \, {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{2}}{\dfrac{ \Omega }{2}}{\frac{ \Omega }{2}}{\frac{ \Omega }{2}} } \, + \, {\mathrm i}n \omega _1 \, + \, {\mathrm i}m \omega _2\; : \; (n,m) \in \mathbb {N}^2 \Big \} \;. \end{aligned}$$
    (255)

1.2 B.2. Integral Identities

The function \(D_{\alpha }\) admits the Fourier transform

$$\begin{aligned} \mathcal {F}[D_{\alpha }](t) \; = \; \sqrt{\omega _1\omega _2} \cdot \mathcal {A}(\alpha ) \cdot D_{\alpha ^{\star }}\Big ( { \mathchoice{\dfrac{\omega _1\omega _2}{2\pi }}{\dfrac{\omega _1\omega _2}{2\pi }}{\frac{\omega _1\omega _2}{2\pi }}{\frac{\omega _1\omega _2}{2\pi }} } t \Big ) \end{aligned}$$
(256)

with

$$\begin{aligned} \mathcal {F}[f](t)\;= \; \int \limits _{ \mathbb {R}}^{} \mathrm {e}^{it x} f(x) \cdot \mathrm {d}x \qquad \mathrm {for} \quad f \in L^{1}(\mathbb {R},\mathrm {d}x) \;. \end{aligned}$$
(257)

Here, we remind that

$$\begin{aligned} \mathcal {A}(\alpha ) \; = \; \varpi \left( 2 \alpha + {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{2}}{\dfrac{ \Omega }{2}}{\frac{ \Omega }{2}}{\frac{ \Omega }{2}} } \right) \qquad \mathrm {and} \qquad \alpha ^{\star }=-\alpha -{\mathrm i}{ \mathchoice{\dfrac{ \Omega }{2}}{\dfrac{ \Omega }{2}}{\frac{ \Omega }{2}}{\frac{ \Omega }{2}} } \;. \end{aligned}$$
(258)

(256) entails that

$$\begin{aligned} \lim _{\alpha \rightarrow 0} \Big \{ \mathcal {A}(\alpha ) D_{\alpha ^{\star }}(t) \Big \} \, = \, \delta (t) \;. \end{aligned}$$
(259)

The \(D_{\alpha }\) functions satisfy the three-term integral identity [16]

$$\begin{aligned}&\int \limits _{ \mathbb {R}}^{} D_{\alpha }\big ( \omega _1 \omega _2 (x-u) \big ) \cdot D_{\beta }\big ( \omega _1 \omega _2 (x-v)\big ) \cdot D_{\gamma }\big ( \omega _1 \omega _2 (x-w) \big )\cdot \mathrm {d}x \nonumber \\&\quad = { \mathchoice{\dfrac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }}{\dfrac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }}{\frac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }}{\frac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }} } D_{\alpha ^{\star }}\big ( \omega _1 \omega _2(w-v)\big )\cdot D_{\beta ^{\star }}\big ( \omega _1 \omega _2(u-w)\big ) \nonumber \\&\qquad \times D_{\gamma ^{\star }}\big ( \omega _1 \omega _2(u-v) \big ) \end{aligned}$$
(260)

provided that \(\alpha +\beta +\gamma =-{\mathrm i}\Omega \) and [5]

$$\begin{aligned}&\int \limits _{ \mathbb {R}}^{} D_{\alpha }\big ( \omega _1 \omega _2 (x-u)\big )\cdot D_{\beta }\big ( \omega _1 \omega _2 (x-v)\big )\cdot D_{\gamma }\big ( \omega _1 \omega _2 (x-w)\big )\cdot D_{\delta }\big ( \omega _1 \omega _2 (x-z)\big )\cdot \mathrm {d}x \nonumber \\&\quad = \mathcal {A}\big (\alpha ,\beta ,\gamma ,\delta \big ) \cdot D_{\alpha + \beta + {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{ 2 }}{\dfrac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }} } } \bigg ( \begin{array}{c} \omega _1 \omega _2(u - v) \\ \omega _1 \omega _2 (w - z) \end{array}\bigg ) \nonumber \\&\qquad \times \int \limits _{ \mathbb {R}}^{} D_{\alpha ^{\star }}\big ( \omega _1 \omega _2 (x-v)\big )\cdot D_{\beta ^{\star }}\big ( \omega _1 \omega _2 (x-u) \big )\cdot D_{\gamma ^{\star }}\big ( \omega _1 \omega _2 (x-z)\big )\nonumber \\&\qquad \times D_{\delta ^{\star }}\big ( \omega _1 \omega _2 (x-w)\big )\cdot \mathrm {d}x \end{aligned}$$
(261)

provided that \(\alpha +\beta +\gamma +\delta \, = \, -{\mathrm i}\Omega \).

Sending one of the integration variables to infinity provides one with the auxiliary identities

$$\begin{aligned}&\int \limits _{ \mathbb {R}}^{} D_{\alpha }\big ( \omega _1 \omega _2(x-u) \big ) \cdot \mathrm {e}^{ \pm 2 {\mathrm i}\pi \beta x} \cdot D_{\gamma }\big ( \omega _1 \omega _2 (x-w) \big )\cdot \mathrm {d}x \nonumber \\&\quad = { \mathchoice{\dfrac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }}{\dfrac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }}{\frac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }}{\frac{ \mathcal {A}\big (\alpha ,\beta ,\gamma \big ) }{ \sqrt{ \omega _1 \omega _2 } }} } \cdot \mathrm {e}^{ \pm 2{\mathrm i}\pi \big (\alpha ^{\star } w + \gamma ^{\star } u \big ) } D_{\beta ^{\star }}\big ( \omega _1 \omega _2 (u-w) \big ) \end{aligned}$$
(262)

provided that that \(\alpha +\beta +\gamma =-{\mathrm i}\Omega \) and

$$\begin{aligned}&\int \limits _{ \mathbb {R}}^{} D_{\alpha }\big ( \omega _1 \omega _2 (x-u) \big ) \cdot D_{\beta }\big ( \omega _1 \omega _2 (x-v)\big ) \cdot D_{\gamma }\big ( \omega _1 \omega _2 (x-w) \big ) \cdot \mathrm {e}^{ \pm 2 {\mathrm i}\pi \delta x} \cdot \mathrm {d}x \nonumber \\&\quad = \mathcal {A}\big (\alpha ,\beta ,\gamma ,\delta \big ) \mathrm {e}^{ \pm 2 {\mathrm i}\pi \big (\alpha +\beta +{\mathrm i}{ \mathchoice{\dfrac{\Omega }{2}}{\dfrac{\Omega }{2}}{\frac{\Omega }{2}}{\frac{\Omega }{2}} }\big ) w } D_{\alpha + \beta + {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{ 2 }}{\dfrac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }} } } \big ( u - v \big ) \nonumber \\&\qquad \times \int \limits _{ \mathbb {R}}^{} D_{\alpha ^{\star }}\big ( \omega _1 \omega _2 (x-v) \big ) \cdot D_{\beta ^{\star }}\big ( \omega _1 \omega _2 (x-u) \big ) \nonumber \\&\qquad \times D_{\delta ^{\star }}\big ( \omega _1 \omega _2 (x-w) \big ) \cdot \mathrm {e}^{ \pm 2 {\mathrm i}\pi \gamma ^{\star } x} \cdot \mathrm {d}x \end{aligned}$$
(263)

provided that \(\alpha +\beta +\gamma +\delta \, = \, -{\mathrm i}\Omega \).

The three-term integral relation can be recast in an operator form as

$$\begin{aligned} D_u( \varvec{ \texttt {p} } )\cdot D_{u+v}(\omega _1\omega _2 \varvec{ \texttt {x} } ) \cdot D_v( \varvec{ \texttt {p} } ) \; = \; D_v(\omega _1\omega _2 \varvec{ \texttt {x} } ) \cdot D_{u+v}( \varvec{ \texttt {p} } ) \cdot D_u(\omega _1\omega _2 \varvec{ \texttt {x} } ) \end{aligned}$$
(264)

see e.g. [17], whereas its degenerate form can be recast as

$$\begin{aligned} D_{\alpha }( \varvec{ \texttt {p} } ) \cdot \mathrm {e}^{\pm 2{\mathrm i}\pi \beta \varvec{ \texttt {x} } } \cdot D_{\gamma }( \varvec{ \texttt {p} } ) \; = \;\mathrm {e}^{\pm 2{\mathrm i}\pi \gamma \varvec{ \texttt {x} } } \cdot D_{\beta }( \varvec{ \texttt {p} } ) \cdot \mathrm {e}^{\pm 2{\mathrm i}\pi \alpha \varvec{ \texttt {x} } } \end{aligned}$$
(265)

where \(\alpha ,\beta ,\gamma \) fulfil the constraint \(\beta =\alpha +\gamma \).

Let \(y_{\pm }\), \(t_{\pm }\) be parameters as in (21). Then, the integral identity involving four D functions can be recast in the operator form as

$$\begin{aligned}&D_{ y_-}\big ( \varvec{ \texttt {p} } _2\big )\cdot D_{ y_+}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{23}\big )\cdot D_{ t_-}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) \cdot D_{ t_+}\big ( \varvec{ \texttt {p} } _2\big ) \nonumber \\&\quad = D_{y_-^{\star } + t_- + {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{ 2 }}{\dfrac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }} } } \big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) \cdot D_{ t_-}\big ( \varvec{ \texttt {p} } _2\big )\cdot D_{ t_+}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{23}\big )\cdot D_{ y_-}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) \cdot D_{ y_+}\big ( \varvec{ \texttt {p} } _2\big )\nonumber \\&\qquad \times D_{y_-^{\star } + t_- + {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{ 2 }}{\dfrac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }} } }^{ - 1 } \big (\omega _1\omega _2 \varvec{ \texttt {x} } _{32}\big ) \;. \end{aligned}$$
(266)

Likewise, its exponential degenerate form can be recast as

$$\begin{aligned}&\mathrm {e}^{2{\mathrm i}\pi y_- \varvec{ \texttt {x} } _1} \cdot D_{ y_-}\big ( \varvec{ \texttt {p} } _1\big )\cdot D_{ y_+}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) \cdot \mathrm {e}^{2{\mathrm i}\pi t_- \varvec{ \texttt {x} } _1} \cdot D_{ t_+}\big ( \varvec{ \texttt {p} } _1\big ) \nonumber \\&\quad = \mathrm {e}^{2{\mathrm i}\pi t_- \varvec{ \texttt {x} } _1} \cdot D_{ t_-}\big ( \varvec{ \texttt {p} } _1\big )\cdot D_{ t_+}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) \cdot \mathrm {e}^{2{\mathrm i}\pi y_- \varvec{ \texttt {x} } _1} \cdot D_{ y_+}\big ( \varvec{ \texttt {p} } _1\big )\nonumber \\&\qquad \times D_{y_-^{\star } + t_- + {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{ 2 }}{\dfrac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }} } }^{ - 1 } \big (\omega _1\omega _2 \varvec{ \texttt {x} } _{21}\big ) \;. \end{aligned}$$
(267)

Finally, the exponential degenerate form of the four D function integrals (263) can be also recast as

$$\begin{aligned}&\mathcal {A}(t_+) \, D_{ y_-}\big ( \varvec{ \texttt {p} } _2\big )\cdot D_{ y_+}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{23}\big )\cdot \mathrm {e}^{ \pm 2{\mathrm i}\pi (t_+^{\star } \varvec{ \texttt {x} } _2+y_+^{\star } \varvec{ \texttt {x} } _3)} \cdot D_{ t_-}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) \nonumber \\&\quad = \mathcal {A}(y_+) \, D_{y_-^{\star } + t_- + {\mathrm i}{ \mathchoice{\dfrac{ \Omega }{ 2 }}{\dfrac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }}{\frac{ \Omega }{ 2 }} } } \big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) D_{ t_-}\big ( \varvec{ \texttt {p} } _2\big )\cdot D_{ t_+}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{23}\big )\nonumber \\&\qquad \times \mathrm {e}^{ \pm 2{\mathrm i}\pi (y_+^{\star } \varvec{ \texttt {x} } _2+t_+^{\star } \varvec{ \texttt {x} } _3)} \cdot D_{ y_-}\big (\omega _1\omega _2 \varvec{ \texttt {x} } _{12}\big ) \;. \end{aligned}$$
(268)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkachov, S.É., Kozlowski, K.K. & Manashov, A.N. On the Separation of Variables for the Modular XXZ Magnet and the Lattice Sinh-Gordon Models. Ann. Henri Poincaré 20, 2623–2670 (2019). https://doi.org/10.1007/s00023-019-00806-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00806-2

Mathematics Subject Classification

Navigation