Skip to main content
Log in

Universality and Sharpness in Activated Random Walks

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the activated random walk model in any dimension with any sleep rate and jump distribution and ergodic initial state. We show that the stabilization properties depend only on the average density of particles, regardless of how they are initially located on the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir, G., Gurel-Gurevich, O.: On fixation of activated random walks. Electron. Commun. Probab. 15, 119–123 (2010). https://doi.org/10.1214/ECP.v15-1536

    Article  MathSciNet  MATH  Google Scholar 

  2. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988). https://doi.org/10.1103/PhysRevA.38.364

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Basu, R., Ganguly, S., Hoffman, C.: Non-fixation for conservative stochastic dynamics on the line. Commun. Math. Phys. 358, 1151–1185 (2018). https://doi.org/10.1007/s00220-017-3059-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Basu, R., Ganguly, S., Hoffman, C., Richey, J.: Activated random walk on a cycle. Ann Inst H Poincaré Probab. Statist. (to appear). arXiv:1709.09163

  5. Cabezas, M., Rolla, L.T., Sidoravicius, V.: Non-equilibrium phase transitions: activated random walks at criticality. J. Stat. Phys. 155, 1112–1125 (2014). https://doi.org/10.1007/s10955-013-0909-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cabezas, M., Rolla, L.T., Sidoravicius, V.: Recurrence and density decay for diffusion-limited annihilating systems. Probab. Theory Relat. Fields 170, 587–615 (2018). https://doi.org/10.1007/s00440-017-0763-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Dickman, R., Muñoz, M.A., Vespignani, A., Zapperi, S.: Paths to self-organized criticality. Braz. J. Phys. 30, 27 (2000). https://doi.org/10.1590/S0103-97332000000100004

    Article  ADS  Google Scholar 

  8. Dickman, R., Rolla, L.T., Sidoravicius, V.: Activated random walkers: facts, conjectures and challenges. J. Stat. Phys. 138, 126–142 (2010). https://doi.org/10.1007/s10955-009-9918-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fey, A., Levine, L., Wilson, D.B.: Driving sandpiles to criticality and beyond. Phys. Rev. Lett. 104, 145703 (2010). https://doi.org/10.1103/PhysRevLett.104.145703

    Article  ADS  Google Scholar 

  10. Fey, A., Meester, R.: Critical densities in sandpile models with quenched or annealed disorder. Markov Process. Relat. Fields 21, 57–83 (2015). arXiv:1211.4760

  11. Fey-den Boer, A., Redig, F.: Organized versus self-organized criticality in the Abelian sandpile model. Markov Process. Relat. Fields 11:425–442, (2005). arXiv:math-ph/0510060

  12. Jo, H.-H., Jeong, H.-C.: Comment on “driving sandpiles to criticality and beyond”. Phys. Rev. Lett. 105, 019601 (2010). https://doi.org/10.1103/PhysRevLett.105.019601

    Article  ADS  Google Scholar 

  13. Kerr, D., Li, H.: Ergodic Theory: Independence and Dichotomies. Springer Monographs in Mathematics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49847-8

    Book  MATH  Google Scholar 

  14. Levine, L.: Threshold state and a conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle. Commun. Math. Phys. 335, 1003–1017 (2015). https://doi.org/10.1007/s00220-014-2216-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016). https://doi.org/10.1017/9781316672815

    Book  MATH  Google Scholar 

  16. Poghosyan, S.S., Poghosyan, V.S., Priezzhev, V.B., Ruelle, P.: Numerical study of the correspondence between the dissipative and fixed-energy abelian sandpile models. Phys. Rev. E 84, 066119 (2011). https://doi.org/10.1103/PhysRevE.84.066119

    Article  ADS  Google Scholar 

  17. Rolla, L.T.: Activated random walks, 2015. Preprint. arXiv:1507.04341

  18. Rolla, L.T., Sidoravicius, V.: Absorbing-state phase transition for driven-dissipative stochastic dynamics on \(Z\). Invent. Math. 188, 127–150 (2012). https://doi.org/10.1007/s00222-011-0344-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Rolla, L.T., Tournier, L.: Non-fixation for biased activated random walks. Ann. Inst. H. Poincaré Probab. Statist. 54, 938–951 (2018). https://doi.org/10.1214/17-AIHP827

    Article  MathSciNet  MATH  Google Scholar 

  20. Shellef, E.: Nonfixation for activated random walks. ALEA Lat. Am. J. Probab. Math. Stat. 7:137–149, 2010. http://alea.impa.br/articles/v7/07-07.pdf

  21. Sidoravicius, V., Teixeira, A.: Absorbing-state transition for stochastic sandpiles and activated random walks. Electron. J. Probab. 22, 33 (2017). https://doi.org/10.1214/17-EJP50

    Article  MathSciNet  MATH  Google Scholar 

  22. Stauffer, A., Taggi, L.: Critical density of activated random walks on transitive graphs. Ann. Probab. 46, 2190–2220 (2018). https://doi.org/10.1214/17-AOP1224

    Article  MathSciNet  MATH  Google Scholar 

  23. Taggi, L.: Absorbing-state phase transition in biased activated random walk. Electron. J. Probab. 21, 13 (2016). https://doi.org/10.1214/16-EJP4275

    Article  MathSciNet  MATH  Google Scholar 

  24. Taggi, L.: Active phase for activated random walks on \({Z}^d\), \(d \ge 3\), with density less than one and arbitrary sleeping rate. Ann. Inst. H. Poincaré Probab. Stat. (to appear). arXiv:1712.05292

Download references

Acknowledgements

We thank Ronald Dickman who introduced us to this topic and has been a source of inspiration for almost twenty years. We thank Augusto Teixeira and Lionel Levine for fruitful and encouraging discussions, and Feng Liang who found a gap in an earlier version of the proof. We also thank Roberto Fernández, Krishnamurthi Ravishankar, Frank den Hollander, and Evgene Verbitskiy for valuable help. O.Z. thanks NYU-Shanghai for support and hospitality. O.Z. also thanks support from ANR MALIN. L.R. received support from grants UBACYT-2017 Mod-I 20020160100147BA and PICT 2015-3154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo T. Rolla.

Additional information

Communicated by Anton Bovier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolla, L.T., Sidoravicius, V. & Zindy, O. Universality and Sharpness in Activated Random Walks. Ann. Henri Poincaré 20, 1823–1835 (2019). https://doi.org/10.1007/s00023-019-00797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00797-0

Navigation