Skip to main content
Log in

Embeddings, Immersions and the Bartnik Quasi-Local Mass Conjectures

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Given a Riemannian 3-ball \(({\bar{B}}, g)\) of nonnegative scalar curvature, Bartnik conjectured that \(({\bar{B}}, g)\) admits an asymptotically flat (AF) extension (without horizons) of the least possible ADM mass and that such a mass minimizer is an AF solution to the static vacuum Einstein equations, uniquely determined by natural geometric conditions on the boundary data of \(({\bar{B}}, g)\). We prove the validity of the second statement, i.e., such mass minimizers, if they exist, are indeed AF solutions of the static vacuum equations. On the other hand, we prove that the first statement is not true in general; there is a rather large class of bodies \(({\bar{B}}, g)\) for which a minimal mass extension does not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Anderson, M.: On the structure of solutions to the static vacuum Einstein equations. Ann. Henri Poincaré 1, 995–1042 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Anderson, M.: On boundary value problems for Einstein metrics. Geom. Topol. 12, 2009–2045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, M.: On the Bartnik conjecture for the static vacuum Einstein equations. Class. Quantum Gravity 33, 015001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Anderson, M., Khuri, M.: On the Bartnik extension problem for static vacuum Einstein metrics. Class. Quantum Gravity 30, 125005 (2013)

    Article  ADS  MATH  Google Scholar 

  5. Arrieta, J.: Elliptic equations, principal eigenvalue and dependence on the domain. Commun. Partial Differ. Equ. 21, 971–991 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartnik, R.: New definition of quasilocal mass. Phys. Rev. Lett. 62, 2346–2348 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Differ. Geom. 37, 31–71 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartnik, R.: Energy in general relativity. In: Yau, S.-T. (ed.) Tsing Hua Lectures on Geometry and Analysis, Hsinchu, Taiwan, 1990–1992, pp. 5–27. International Press, Boston (1995)

    Google Scholar 

  10. Bartnik, R.: Mass and 3-metrics of non-negative scalar curvature. In: Proceedings of the International Congress of Mathematicians, Vol II, pp. 231–240. Beijing (2002)

  11. Bartnik, R.: Phase space for the Einstein equations. Commun. Anal. Geom. 13, 845–885 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bass, R., Burdzy, K.: The boundary Harnack principle for nondivergence form elliptic operators. J. Lond. Math. Soc. (2) 50, 157–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beig, R., Chruściel, P.: Killing vectors in asymptotically flat space-times, I. Asymptotically translational Killing vectors and the rigid positive energy theorem. J. Math. Phys. 37, 1939–1961 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brill, D., Deser, S., Fadeev, L.: Sign of gravitational energy. Phys. Lett. A 26, 538–539 (1968)

    Article  ADS  Google Scholar 

  16. Brown, J., York, Jr. J.: Quasilocal energy in general relativity. In: Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), 129142, Contemporary Mathematics, 132. American Mathematical Society, Providence, RI

  17. Bunting, G., Massoud-ul-Alam, A.: Non-existence of multiple black holes in asymptotically Euclidean static vacuum space-times. Gen. Relativ. Gravit. 19, 147–154 (1987)

    Article  ADS  MATH  Google Scholar 

  18. Carlotto, A., Chodosh, O., Eichmair, M.: Effective versions of the positive mass theorem. Invent. Math. 206, 975–1016 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chruściel, P., Delay, E.: Manifold structures for sets of solutions of the general relativistic constraint equations. J. Geom. Phys. 51, 442–472 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Colding, T., Minicozzi II, W.: A course in minimal surfaces. In: Graduate Studies in Mathematics, vol. 121. American Mathematical Society (2011)

  21. Corvino, J.: Scalar curvature deformation and gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Corvino, J.: A note on the Bartnik mass, nonlinear analysis in geometry and applied mathematics. Harv. Univ. Cent. Math. Sci. Appl. Ser. Math. 1, 49–75 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Fischer, A., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein’s equations I; one killing field. Ann. Inst. H. Poincaré 33, 147–194 (1980)

    MathSciNet  MATH  Google Scholar 

  24. Galloway, G., Miao, P.: Variational and rigidity properties of static potentials. Commun. Anal. Geom. 25, 163–183 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  26. Hawking, S.: Gravitational radiation in an expanding universe. J. Math. Phys. 9, 598 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  27. Huang, L.-H., Martin, D., Miao, P.: Static potentials and area minimizing hypersurfaces. Proc. Am. Math. Soc. 146, 2647–2661 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Israel, W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    Article  ADS  Google Scholar 

  30. Jauregui, J.: Fill-ins of non-negative scalar curvature, static metrics, and quasi-local mass. Pac. J. Math. 261, 417–444 (2013)

    Article  MATH  Google Scholar 

  31. Jauregui, J.: On the lower semicontinuity of the ADM mass. Commun. Anal. Geom. 26, 85–111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jauregui, J.: Smoothing the Bartnik boundary conditions and other results on Bartnik’s quasi-local mass. J. Geom. Phys. 136, 228–243 (2019). arXiv:1806.08348

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Jauregui, J., Lee, D.: Lower semicontinuity of mass under \(C^{0}\) convergence and Huisken’s isoperimetric mass, J. Reine Angew. Math., (to appear). arXiv:1602.00732

  34. Kreith, K.: Criteria for positive Green’s functions. Ill. J. Math. 12, 475–478 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin, C.-Y.: Parabolic constructions of asymptotically flat 3-metrics of prescribed scalar curvature. Calc. Var. Partial Differ. Equ. 49(3–4), 1309–1335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, C.-Y., Sormani, C.: Bartnik’s mass and Hamilton’s modified Ricci flow. Ann. Henri Poincaré 17(10), 2783–2800 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Mantoulidis, C., Miao, P.: Total mean curvature, scalar curvature, and a variational analog of Brown–York mass. Commun. Math. Phys. 352, 703–718 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Mantoulidis, C., Schoen, R.: On the Bartnik mass of apparent horizons. Class. Quantum Gravity 32, 205002 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Martin, R.S.: Minimal positive harmonic functions. Trans. Am. Math. Soc. 49, 137–172 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  40. McCormick, S.: The phase space for the Einstein–Yang–Mills equations and the first law of black hole mechanics. Adv. Theor. Math. Phys. 18, 799–825 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. McCormick, S.: A note on mass-minimising extensions. Gen. Relativ. Gravit. 47, 145 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. McCormick, S.: Gluing Bartnik extensions, continuity of the Bartnik mass, and the equivalence of definitions. arXiv:1805.09792

  43. Meeks, W., Simon, L., Yau, S.-T.: Embedded minimal surfaces, exotic spheres and manifolds with positive Ricci curvature. Ann. Math. 116, 621–659 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Miao, P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)

    Article  MathSciNet  Google Scholar 

  45. Miao, P.: Variational effect of boundary mean curvature on ADM mass in general relativity. In: Mathematical Physics Research on Leading Edge, pp 145–171. Nova Science Publisher, Hauppauge, New York (2004)

  46. Miao, P.: A remark on boundary effects for static vacuum initial data sets. Class. Quantum Gravity 22, L53–L59 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Miao, P., Tam, L.-F.: Static potentials on asymptotically flat manifolds. Ann. Henri Poincaré 16, 2239–2264 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6, 337–394 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  49. Penrose, R.: Some unsolved problems in classical general relativity. In: Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, pp. 631–668. Princeton University Press (1982)

  50. Pogorelov, A.V.: Regularity of a convex surface with given Gaussian curvature. Mat. Sbornik 31(73), 88–103 (1952). (Russian)

    MathSciNet  Google Scholar 

  51. Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. (N.Y.) 88, 286–318 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Shi, Y., Tam, L.: Positive mass theorem and the boundary behavior of compact manifolds with non-negative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    Article  MATH  Google Scholar 

  54. Smith, B., Weinstein, G.: Quasiconvex foliations and asymptotically flat metrics of non-negative scalar curvature. Commun. Anal. Geom. 12, 511–551 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Szabados, L.: Quasi-local energy-momentum and angular momentum in general relativity. In: Living Reviews in Relativity, lrr-2009-4. http://relativity.livingreviews.org/Articles/lrr-2009-4

  56. Tod, P.: Spatial metrics which are static in many ways. Gen. Relativ. Gravity 32, 2079–2090 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Wang, M.-T., Yau, S.-T.: Isometric embeddings into the Minkowski space and new quasi-local mass. Commun. Math. Phys. 288, 919–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Anderson.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, M.T., Jauregui, J.L. Embeddings, Immersions and the Bartnik Quasi-Local Mass Conjectures. Ann. Henri Poincaré 20, 1651–1698 (2019). https://doi.org/10.1007/s00023-019-00786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00786-3

Navigation