Skip to main content
Log in

Non-perturbative Quantum Mechanics from Non-perturbative Strings

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

This work develops a new method to calculate non-perturbative corrections in one-dimensional Quantum Mechanics, based on trans-series solutions to the refined holomorphic anomaly equations of topological string theory. The method can be applied to traditional spectral problems governed by the Schrödinger equation, where it both reproduces and extends the results of well-established approaches, such as the exact WKB method. It can be also applied to spectral problems based on the quantization of mirror curves, where it leads to new results on the trans-series structure of the spectrum. Various examples are discussed, including the modified Mathieu equation, the double-well potential and the quantum mirror curves of local \({\mathbb {P}}^2\) and local \({\mathbb {F}}_0\). In all these examples, it is verified in detail that the trans-series obtained with this new method correctly predict the large-order behavior of the corresponding perturbative sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: 16th International Congress on Mathematical Physics, Prague, August 2009, pp. 265–289, World Scientic 2010 (2009) arXiv:0908.4052

  2. Mariño, M.: Spectral theory and mirror symmetry. arXiv:1506.07757

  3. Codesido, S., Mariño, M.: Holomorphic anomaly and quantum mechanics. J. Phys. A 51, 055402 (2018). arXiv:1612.07687

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994). arXiv:hep-th/9309140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Huang, M.-X., Klemm, A.: Direct integration for general \(\Omega \) backgrounds. Adv. Theor. Math. Phys. 16, 805–849 (2012). arXiv:1009.1126

    Article  MathSciNet  MATH  Google Scholar 

  6. Krefl, D., Walcher, J.: Extended holomorphic anomaly in gauge theory. Lett. Math. Phys. 95, 67–88 (2011). arXiv:1007.0263

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Delabaere, E., Dillinger, H., Pham, F.: Exact semiclassical expansions for one-dimensional quantum oscillators. J. Math. Phys. 38, 6126–6184 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Huang, M.-X., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models. JHEP 09, 054 (2007). arXiv:hep-th/0605195

    Article  ADS  MathSciNet  Google Scholar 

  9. Grimm, T.W., Klemm, A., Mariño, M., Weiss, M.: Direct integration of the topological string. JHEP 08, 058 (2007). arXiv:hep-th/0702187

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Grassi, A., Gu, J.: Argyres-Douglas theories, Painlevé II and quantum mechanics. arXiv:1803.02320

  11. Grassi, A., Mariño, M.: A Solvable Deformation of Quantum Mechanics. arXiv:1806.01407

  12. Mironov, A., Morozov, A.: Nekrasov functions and exact Bohr–Sommerfeld integrals. JHEP 1004, 040 (2010). arXiv:0910.5670

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Huang, M.-X., Kashani-Poor, A.-K., Klemm, A.: The \(\Omega \) deformed B-model for rigid \(\cal{N}=2\) theories. Annales Henri Poincaré 14, 425–497 (2013). arXiv:1109.5728

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Huang, M.-X.: On gauge theory and topological string in Nekrasov–Shatashvili limit. JHEP 1206, 152 (2012). arXiv:1205.3652

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Mariño, M.: Lectures on non-perturbative effects in large \(N\) gauge theories, matrix models and strings. Fortsch. Phys. 62, 455–540 (2014). arXiv:1206.6272

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Aniceto, I., Basar, G., Schiappa, R.: A Primer on Resurgent Transseries and their Asymptotics, arXiv:1802.10441

  17. Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly. Annales Henri Poincaré 17, 331–399 (2016). arXiv:1308.1695

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local \({\mathbb{C}\mathbb{P}^2}\). Commun. Math. Phys. 338, 285–346 (2015). arXiv:1407.4821

    Article  ADS  MATH  Google Scholar 

  19. Couso-Santamaría, R., Mariño, M., Schiappa, R.: Resurgence matches quantization. J. Phys. A50, 145402 (2017). arXiv:1610.06782

    ADS  MathSciNet  MATH  Google Scholar 

  20. Grassi, A., Hatsuda, Y., Mariño, M.: Topological strings from quantum mechanics. Annales Henri Poincaré 17, 3177–3235 (2016). arXiv:1410.3382

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Voros, A.: Spectre de l’équation de Schrödinger et méthode BKW. Publications Mathématiques d’Orsay (1981)

  22. Silverstone, H.J.: JWKB connection-formula problem revisited via Borel summation. Phys. Rev. Lett. 55, 2523 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Voros, A.: The return of the quartic oscillator. The complex WKB method. Annales de l’I.H.P. Physique Théorique 39, 211–338 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Zinn-Justin, J.: Multi-instanton contributions in quantum mechanics 2. Nucl. Phys. B 218, 333–348 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zinn-Justin, J., Jentschura, U.D.: Multi-instantons and exact results I: conjectures, WKB expansions, and instanton interactions. Annals Phys. 313, 197–267 (2004). arXiv:quant-ph/0501136

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zinn-Justin, J., Jentschura, U.D.: Multi-instantons and exact results II: specific cases, higher-order effects, and numerical calculations. Annals Phys. 313, 269–325 (2004). arXiv:quant-ph/0501137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Álvarez, G.: Langer–Cherry derivation of the multi-instanton expansion for the symmetric double well. J. Math. Phys. 45, 3095–3108 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Álvarez, G., Casares, C.: Uniform asymptotic and JWKB expansions for anharmonic oscillators. J. Phys. A 33, 2499 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Dunne, G.V., Ünsal, M.: Uniform WKB, multi-instantons, and resurgent trans-series. Phys. Rev. D 89, 105009 (2014). arXiv:1401.5202

    Article  ADS  Google Scholar 

  30. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \(\cal{N}=2\) supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). arXiv:hep-th/9407087

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). arXiv:hep-th/0206161

    Article  MathSciNet  MATH  Google Scholar 

  32. Gu, J., Sulejmanpasic, T.: High order perturbation theory for difference equations and Borel summability of quantum mirror curves. JHEP 12, 014 (2017). arXiv:1709.00854

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Grassi, A., Mariño, M., Zakany, S.: Resumming the string perturbation series. JHEP 1505, 038 (2015). arXiv:1405.4214

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Huang, M.-X., Wang, X.-F.: Topological strings and quantum spectral problems. JHEP 1409, 150 (2014) arXiv:1406.6178

  35. Dunham, J.L.: The Wentzel–Brillouin–Kramers method of solving the wave equation. Phys. Rev. 41, 713–720 (1932)

    Article  ADS  MATH  Google Scholar 

  36. Bender, C.M., Olaussen, K., Wang, P.S.: Numerological analysis of the WKB approximation in large order. Phys. Rev. D 16, 1740–1748 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  37. Galindo, A., Pascual, P.: Quantum Mechanics, 2. Springer, New York (1990)

    MATH  Google Scholar 

  38. Balian, R., Parisi, G., Voros, A.: Quartic oscillator. In: Feynman Path Integrals, vol. 106, pp. 337–360. Springer, New York (1979)

  39. Voros, A.: Zeta-regularisation for exact-WKB resolution of a general 1D Schrödinger equation. arXiv:1202.3100

  40. Voros, A.: Exact anharmonic quantization condition (in one dimension). In: IMA Volumes in Mathematics and its Applications, vol. 95, pp. 189–224 (1997)

  41. Codesido, S., Grassi, A., Mariño, M.: Spectral theory and mirror curves of higher genus. Annales Henri Poincaré 18, 559–622 (2017). arXiv:1507.02096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Wang, X., Zhang, G., Huang, M.-X.: New exact quantization condition for toric Calabi–Yau geometries. Phys. Rev. Lett. 115, 121601 (2015). arXiv:1505.05360

    Article  ADS  Google Scholar 

  43. Hatsuda, Y., Mariño, M.: Exact quantization conditions for the relativistic Toda lattice. JHEP 05, 133 (2016). arXiv:1511.02860

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Franco, S., Hatsuda, Y., Mariño, M.: Exact quantization conditions for cluster integrable systems. J. Stat. Mech. 1606, 063107 (2016). arXiv:1512.03061

    Article  MathSciNet  Google Scholar 

  45. Kashaev, R., Mariño, M.: Operators from mirror curves and the quantum dilogarithm. Commun. Math. Phys. 346, 967 (2016). arXiv:1501.01014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Laptev, A., Schimmer, L., Takhtajan, L.A.: Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves. Geom. Funct. Anal. 26, 288–305 (2016). arXiv:1510.00045

    Article  MathSciNet  MATH  Google Scholar 

  47. Dingle, R.B., Morgan, G.J.: WKB methods for difference equations I. Appl. Sci. Res. 18, 221–237 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  48. Aganagic, M., Cheng, M.C., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. JHEP 1211, 019 (2012). arXiv:1105.0630

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Huang, M.-X.: On gauge theory and topological string in Nekrasov–Shatashvili limit. JHEP 06, 152 (2012). arXiv:1205.3652

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Huang, M.-X., Klemm, A., Reuter, J., Schiereck, M.: Quantum geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit. JHEP 1502, 031 (2015). arXiv:1401.4723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Fischbach, F., Klemm, A., Nega, C.: WKB method and quantum periods beyond genus one. arXiv:1803.11222

  52. Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. JHEP 0910, 069 (2009). arXiv:hep-th/0701156

    Article  ADS  MathSciNet  Google Scholar 

  53. Choi, J., Katz, S., Klemm, A.: The refined BPS index from stable pair invariants. Commun. Math. Phys. 328, 903–954 (2014). arXiv:1210.4403

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). arXiv:hep-th/0305132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Nekrasov, N., Okounkov, A.: Membranes and sheaves. arXiv:1404.2323

  56. Gu, J., Huang, M.-X., Kashani-Poor, A.-K., Klemm, A.: Refined BPS invariants of 6d SCFTs from anomalies and modularity. arXiv:1701.00764

  57. Couso-Santamaría, R.: Universality of the topological string at large radius and NS-brane resurgence. Lett. Math. Phys. 107, 343–366 (2017). arXiv:1507.04013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Couso-Santamaría, R., Schiappa, R., Vaz, R.: On asymptotics and resurgent structures of enumerative Gromov–Witten invariants. Commun. Num. Theor. Phys. 11, 707–790 (2017). arXiv:1605.07473

    Article  MathSciNet  MATH  Google Scholar 

  59. Drukker, N., Mariño, M., Putrov, P.: Nonperturbative aspects of ABJM theory. JHEP 11, 141 (2011). arXiv:1103.4844

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Kazakov, V. A., Kostov, I. K.: Instantons in noncritical strings from the two matrix model. arXiv:hep-th/0403152

  61. Pasquetti, S., Schiappa, R.: Borel and Stokes nonperturbative phenomena in topological string theory and \(c=1\) matrix models. Annales Henri Poincaré 11, 351–431 (2010). arXiv:0907.4082

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. He, W., Miao, Y.-G.: Mathieu equation and elliptic curve. Commun. Theor. Phys. 58, 827–834 (2012). arXiv:1006.5185

    Article  ADS  MATH  Google Scholar 

  63. Başar, G., Dunne, G.V.: Resurgence and the Nekrasov–Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems. JHEP 02, 160 (2015). arXiv:1501.05671

    ADS  Google Scholar 

  64. Kashani-Poor, A.-K., Troost, J.: Pure \(mathcal N=2\) super Yang-Mills and exact WKB. JHEP 08, 160 (2015). arXiv:1504.08324

    Article  MATH  Google Scholar 

  65. Ashok, S.K., Jatkar, D.P., John, R.R., Raman, M., Troost, J.: Exact WKB analysis of \({\cal{N}}\) = 2 gauge theories. JHEP 07, 115 (2016). arXiv:1604.05520

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Başar, G., Dunne, G.V., Ünsal, M.: Quantum geometry of resurgent perturbative/non-perturbative relations. JHEP 05, 087 (2017). arXiv:1701.06572

    ADS  MATH  Google Scholar 

  67. Piatek, M. R., Pietrykowski, A. R.: Solvable spectral problems from 2d CFT and \(\cal{N}=2\) gauge theories. In: 25th International Conference on Integrable Systems and Quantum Symmetries (ISQS-25) Prague, Czech Republic, June 6–10, 2017, 2017. arXiv:1710.01051

  68. Martinec, E.J., Warner, N.P.: Integrable systems and supersymmetric gauge theory. Nucl. Phys. B 459, 97–112 (1996). arXiv:hep-th/9509161

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integrability and Seiberg–Witten exact solution. Phys. Lett. B 355, 466–474 (1995). arXiv:hep-th/9505035

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Sulejmanpasic, T., Ünsal, M.: Aspects of perturbation theory in quantum mechanics: the Benderwu mathematica package. arXiv:1608.08256

  71. Mariño, M., Schiappa, R., Weiss, M.: Nonperturbative effects and the large-order behavior of matrix models and topological strings. Commun. Num. Theor. Phys. 2, 349–419 (2008). arXiv:0711.1954

    Article  MathSciNet  MATH  Google Scholar 

  72. Stone, M., Reeve, J.: Late terms in the asymptotic expansion for the energy levels of a periodic potential. Phys. Rev. D 18, 4746 (1978)

    Article  ADS  Google Scholar 

  73. Başar, G., Dunne, G.V., Ünsal, M.: Resurgence theory, ghost-instantons, and analytic continuation of path integrals. JHEP 10, 041 (2013). arXiv:1308.1108

    ADS  MathSciNet  MATH  Google Scholar 

  74. Álvarez, G., Casares, C.: Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator. J. Phys. A 33, 5171 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Álvarez, G., Howls, C.J., Silverstone, H.J.: Anharmonic oscillator discontinuity formulae up to second-exponentially-small order. J. Phys. A 35, 4003 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Matone, M.: Instantons and recursion relations in \(\cal{N}=2\) SUSY gauge theory. Phys. Lett. B 357, 342–348 (1995). arXiv:hep-th/9506102

    Article  ADS  MathSciNet  Google Scholar 

  77. Flume, R., Fucito, F., Morales, J.F., Poghossian, R.: Matone’s relation in the presence of gravitational couplings. JHEP 04, 008 (2004). arXiv:hep-th/0403057

    Article  ADS  MathSciNet  Google Scholar 

  78. Gorsky, A., Milekhin, A.: RG-Whitham dynamics and complex Hamiltonian systems. Nucl. Phys. B 895, 33–63 (2015). arXiv:1408.0425

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Serone, M., Spada, G., Villadoro, G.: The power of perturbation theory. JHEP 05, 056 (2017). arXiv:1702.04148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Kallen, J., Mariño, M.: Instanton effects and quantum spectral curves. Annales Henri Poincaré 17, 1037–1074 (2016). arXiv:1308.6485

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Haghighat, B., Klemm, A., Rauch, M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008). arXiv:0809.1674

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. JHEP 03, 069 (2008). arXiv:hep-th/0310272

    Article  ADS  MathSciNet  Google Scholar 

  83. Gopakumar, R., Vafa, C.: M-theory and topological strings. 2. arXiv:hep-th/9812127

  84. Grassi, A., Gu, J.: BPS relations from spectral problems and blowup equations. arXiv:1609.05914

  85. Zakany, S.: Quantized mirror curves and resummed WKB. arXiv:1711.01099

  86. Hatsuda, Y.: Comments on exact quantization conditions and non-perturbative topological strings. arXiv:1507.04799

  87. Brini, A., Tanzini, A.: Exact results for topological strings on resolved \(Y^{p, q}\) singularities. Commun. Math. Phys. 289, 205–252 (2009). arXiv:0804.2598

    Article  ADS  MATH  Google Scholar 

  88. Drukker, N., Mariño, M., Putrov, P.: From weak to strong coupling in ABJM theory. Commun. Math. Phys. 306, 511–563 (2011). arXiv:1007.3837

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Kashaev, R., Mariño, M., Zakany, S.: Matrix models from operators and topological strings, 2. Annales Henri Poincaré 17, 2741–2781 (2016). arXiv:1505.02243

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Hatsuda, Y., Katsura, H., Tachikawa, Y.: Hofstadter’s butterfly in quantum geometry. New J. Phys. 18, 103023 (2016). arXiv:1606.01894

    Article  ADS  MathSciNet  Google Scholar 

  91. Hatsuda, Y., Sugimoto, Y., Xu, Z.: Calabi-Yau geometry and electrons on 2d lattices. Phys. Rev. D 95, 086004 (2017). arXiv:1701.01561

    Article  ADS  MathSciNet  Google Scholar 

  92. Hatsuda, Y.: Perturbative/nonperturbative aspects of Bloch electrons in a honeycomb lattice. arXiv:1712.04012

  93. Mariño, M.: Nonperturbative effects and nonperturbative definitions in matrix models and topological strings. JHEP 0812, 114 (2008). arXiv:0805.3033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Aniceto, I., Schiappa, R.: Nonperturbative ambiguities and the reality of resurgent transseries. Commun. Math. Phys. 335, 183–245 (2015). arXiv:1308.1115

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Zinn-Justin, J.: Expansion around instantons in quantum mechanics. J. Math. Phys. 22, 511 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  96. Garoufalidis, S., Its, A., Kapaev, A., Mariño, M.: Asymptotics of the instantons of Painlevé I. Int. Math. Res. Not. 2012, 561–606 (2012). arXiv:1002.3634

    Article  MATH  Google Scholar 

  97. Aniceto, I., Schiappa, R., Vonk, M.: The resurgence of instantons in string theory. Commun. Num. Theor. Phys. 6, 339–496 (2012). arXiv:1106.5922

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Mariño.

Additional information

Communicated by Boris Pioline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codesido, S., Mariño, M. & Schiappa, R. Non-perturbative Quantum Mechanics from Non-perturbative Strings. Ann. Henri Poincaré 20, 543–603 (2019). https://doi.org/10.1007/s00023-018-0751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0751-x

Navigation