Skip to main content
Log in

Constructive Renormalization of the 2-Dimensional Grosse–Wulkenhaar Model

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study a quartic matrix model with partition function \(Z=\int d\ M\exp \mathrm{Tr}\ (-\Delta M^2-\frac{\lambda }{4}M^4)\). The integral is over the space of Hermitian \((\varLambda +1)\times (\varLambda +1)\) matrices, the matrix \(\Delta \), which is not a multiple of the identity matrix, encodes the dynamics and \(\lambda >0\) is a scalar coupling constant. We proved that the logarithm of the partition function is the Borel sum of the perturbation series and hence is a well-defined analytic function of the coupling constant in certain analytic domain of \(\lambda \), by using the multi-scale loop vertex expansions. All the non-planar graphs generated in the perturbation expansions have been taken care of on the same footing as the planar ones. This model is derived from the self-dual \(\phi ^4\) theory on the 2-dimensional Moyal space also called the 2-dimensional Grosse–Wulkenhaar model. This would also be the first fully constructed matrix model which is non-trivial and not solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connes, A., Douglas, M.R., Schwarz, A.S.: Noncommutative geometry and matrix theory: compactification on tori. JHEP 9802, 003 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Schomerus, V.: D-branes and deformation quantization. JHEP 9906, 030 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Minwalla, S., Van Raamsdonk, M., Seiberg, N.: Noncommutative perturbative dynamics. JHEP 0002, 020 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Langmann, E., Szabo, R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168–177 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Grosse, H., Wulkenhaar, R.: Power-counting theorem for non-local matrix models and renormalisation. Commun. Math. Phys. 254, 91 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Grosse, H., Wulkenhaar, R.: Renormalisation of \(\phi \)4 theory on noncommutative \(\mathbb{R}\)2 in the matrix base. JHEP 0312, 019 (2003)

    Article  ADS  Google Scholar 

  8. Grosse, H., Wulkenhaar, R.: Renormalisation of \(\phi \)4 theory on noncommutative \(\mathbb{R}\)**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Rivasseau, V., Vignes-Tourneret, F., Wulkenhaar, R.: Renormalization of noncommutative \(\phi \)**4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of quantum field theory on noncommutative phase spaces. JHEP 01, 017 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Vignes-Tourneret, F.: Renormalization of the orientable non-commutative Gross–Neveu model. Ann. H. Poincaré 8(3), 427–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grosse, H., Steinacker, H.: Renormalization of the noncommutative \(\phi ^3\) model through the Kontsevich model. Nucl. Phys. B746, 202–226 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Grosse, H., Steinacker, H.: A nontrivial solvable noncommutative \(\phi ^3\) model in \(4\) dimensions. JHEP 0608, 008 (2006). Exact renormalization of a noncommutative \(\phi ^3\) model in 6 dimensions. Adv. Theor. Math. Phys. 12(3), 605–639 (2008)

  14. Wang, Z., Wan, S.: Renormalization of orientable non-commutative complex \(\Phi ^6_3\) model. Ann. Henri Poincaré 9, 65–90 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Grosse, H., Vignes-Tourneret, F.: Quantum field theory on the degenerate Moyal space. J. Noncommut. Geom. 4, 555 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rivasseau, V.: Non-commutative renormalization. Séminaire Poincaré (2007)

  17. Grosse, H., Wulkenhaar, R.: The beta-function in duality-covariant noncommutative \(\phi \)4 theory. Eur. Phys. J. C 35, 277 (2004)

    Article  ADS  MATH  Google Scholar 

  18. Disertori, M., Rivasseau, V.: Two and three loops beta function of non commutative \(\phi _4^4\) theory. Eur. Phys. J. C 50, 661 (2007)

    Article  ADS  MATH  Google Scholar 

  19. Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative \(\phi _4^4\) theory to all orders. Phys. Lett. B 649, 95 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Grosse, H., Wulkenhaar, R.: Self-dual noncommutative \(\phi ^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 329, 1069 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Grosse, H., Wulkenhaar, R.: On the fixed point equation of a solvable 4D QFT model. Construction of the \(\Phi ^4_4\)-quantum field theory on noncommutative Moyal space. RIMS Kokyuroku 1904, 67 (2013)

    Google Scholar 

  22. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  23. Krajewski, T., Rivasseau, V., Tanasa, A., Wang, Z.: Topological graph polynomials and quantum field theory, part I: heat kernel theories. J. Noncommut. Geom. 4, 29 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)

    Book  Google Scholar 

  25. Glimm, J., Jaffe, A.M.: Quantum Physics. A Functional Integral Point Of View. Springer, New York (1987)

    MATH  Google Scholar 

  26. Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in the \(P(\phi )_{2}\) quantum field model. Ann. Math. 2(100), 585–632 (1974)

    Article  MathSciNet  Google Scholar 

  27. Brydges, D., Kennedy, T.: Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys. 48, 19 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. Magnen, J., Rivasseau, V.: Constructive field theory without tears. Ann. Henri Poincaré 9, 403–424 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Rivasseau, V., Wang, Z.: Loop vertex expansion for \(\Phi ^{2k}\) theory in zero dimension. J. Math. Phys. 51, 092304 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Rivasseau, V., Wang, Z.: How to Resum Feynman graphs. Annales Henri Poincaré 15(11), 2069 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Rivasseau, V.: Loop Vertex Expansion for Higher Order Interactions. arXiv:1702.07602 [math-ph]

  33. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive Physics, Lecture Notes in Physics 446, Springer, Berlin (1995)

  34. Gurau, R., Rivasseau, V.: The multiscale loop vertex expansion. Annales Henri Poincaré 16(8), 1869 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Rivasseau, V., Wang, Z.: Corrected loop vertex expansion for \(\Phi ^4_2\) theory. J. Math. Phys. 56, 062301 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Delepouve, T., Gurau, R., Rivasseau, V.: Borel summability and the non perturbative \(1/N\) expansion of arbitrary quartic tensor models. arXiv:1403.0170 [hep-th]

  37. Delepouve, T., Rivasseau, V.: Constructive tensor field theory: the \(T^4_3\) model. arXiv:1412.5091 [math-ph]

  38. Rivasseau, V., Vignes-Tourneret, F.: Constructive tensor field theory: The \(T^{4}_{4}\) model. arXiv:1703.06510 [math-ph]

  39. Sokal, A.D.: An improvement of Watson’s theorem on Borel summability. J. Math. Phys. 21, 261 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  40. Eckmann, J.P., Magnen, J., Sénéor, R.: Decay properties and Borel summability for the Schwinger functions in \(P(\phi )_{2}\) theories. Commun. Math. Phys. 39, 251 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  41. Gracia-Bondia, J.M., Varilly, J.C.: Algebras of distributions suitable for phase space quantum mechanics. 1. J. Math. Phys. 29, 869 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Gayral, V., Gracia-Bondia, J.M., Iochun, B., Schücker, T., Varilly, J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Nelson, E.: A Quartic Interaction in Two Dimensions. Mathematical Theory of Elementary Particles, p. 69. M.I.T. Press, Cambridge (1965)

    Google Scholar 

  44. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Functional Analysis, vol. 1. Academic Press, New York (1972)

    MATH  Google Scholar 

  45. Magnen, J., et al.: Scaling behavior of three dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Gurau, R.: The \(1/N\) expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330(3), 973 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Wang, Z.: Constructive renormalization for the 3-dimensional Grosse–Wulkenhaar model (work in progress)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhituo Wang.

Additional information

Communicated by Raimar Wulkenhaar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z. Constructive Renormalization of the 2-Dimensional Grosse–Wulkenhaar Model. Ann. Henri Poincaré 19, 2435–2490 (2018). https://doi.org/10.1007/s00023-018-0688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0688-0

Navigation