Skip to main content
Log in

Extending Gromov’s optimal systolic inequality

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

The existence of nontrivial cup products or Massey products in the cohomology of a manifold leads to inequalities of systolic type, but in general such inequalities are not optimal (tight). Gromov proved an optimal systolic inequality for complex projective space. We provide a natural extension of Gromov’s inequality to manifolds whose fundamental cohomology class is a cup product of 2-dimensional classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

There is no data related to this paper.

Notes

  1. Gromov [12, 13].

  2. Katz and Lescop [18]; Katz [17].

  3. See [6, 7, 19].

  4. John [15, p. 203]; Milman and Schechtman [23, Section 3.3, p. 10].

  5. Speyer https://mathoverflow.net/a/449498/28128.

  6. Banaszczyk [2].

  7. Banaszczyk [3].

  8. Without the stabilisation (i.e., allowing denominators in cycles), one witnesses a widespread phenomenon of systolic freedom; see e.g., Babenko and Katz [1].

  9. Whitney [27]; Federer [10, Section 4.10, p. 380]; Gromov [13, Section 4.34, p. 261]; Pansu [24, Lemma 17].

  10. See also Goodwillie https://mathoverflow.net/a/449042/28128 The bound also results by representing the cup product by a suitable Pfaffian, and applying Roos [26, Lemma 2.1, p. 1788] (see there for some history; the result goes back to Banach).

  11. Gromov [11, item 4.37, p. 60].

  12. Gromov [13, item 4.37, p. 262].

  13. Bangert et al. [4, Proposition 1.4]).

References

  1. Babenko, I., Katz, M.: Systolic freedom of orientable manifolds. Annales Scientifiques de l’Ecole normale supérieure 31(6), 787–809 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(4), 625–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in\({\mathbb{R}^{n}}\). Discrete Comput. Geom. 13, 217–231 (1995)

  4. Bangert, V., Katz, M., Shnider, S., Weinberger, S.: \(E_7\), Wirtinger inequalities, Cayley 4-form, and homotopy. Duke Math. J. 146(1), 35–70 (2009)

  5. Bavard, C.: Inégalité isosystolique pour la bouteille de Klein. Math. Ann. 274(3), 439–441 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dranishnikov, A., Katz, M., Rudyak, Y.: Small values of the Lusternik-Schnirelmann category for manifolds. Geom. Topol. 12(3), 1711–1727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dranishnikov, A., Katz, M., Rudyak, Y.: Cohomological dimension, self-linking, and systolic geometry. Israel J. Math. 184, 437–453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Federer, H.: Some theorems on integral currents. Trans. Amer. Math. Soc. 117, 43–67 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Federer, H.: Geometric Measure Theory. Grundlehren der mathematischen Wissenschaften, 153. Springer-Verlag, Berlin, (1969)

  10. Federer, H.: Real flat chains, cochains, and variational problems. Indiana Univ. Math. J. 24, 351–407 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gromov, M.: Structures métriques pour les variétés riemanniennes. Edited by J. Lafontaine and P. Pansu. Textes Mathématiques 1 CEDIC, Paris. (1981)

  12. Gromov, M.: Systoles and intersystolic inequalities, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), 291–362, Sémin. Congr., 1, Soc. Math. France, Paris. www.emis.de/journals/SC/1996/1/ps/smf_sem-cong_1_291-362.ps.gz (1992)

  13. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Based on the 1981 French original With appendices by Katz, M., Pansu P. and Semmes, S. Translated from the French by Sean Michael Bates. Progress in Mathematics, 152. Birkhäuser Boston, Boston, MA, (1999)

  14. Jabbour, A., Sabourau, S.: Sharp upper bounds on the length of the shortest closed geodesic on complete punctured spheres of finite area. Rev. Mat. Iberoam. 38(4), 1051–1065 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. John, F.: Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, January 8,: 187–204, Interscience Publishers, New York (1948)

  16. Kannan, R., Lovász, L.: Covering minima and lattice-point-free convex bodies. Ann. Math. 2 128(3), 577–602 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katz, M.: Systolic inequalities and Massey products in simply-connected manifolds. Israel J. Math. 164, 381–395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katz, M., Lescop, C.: Filling area conjecture, optimal systolic inequalities, and the fiber class in abelian covers. Geometry, spectral theory, groups, and dynamics, 181–200, Contemp. Math., 387, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, (2005)

  19. Katz, M., Rudyak, Y.: Lusternik-Schnirelmann category and systolic category of low-dimensional manifolds. Comm. Pure Appl. Math. 59(10), 1433–1456 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Katz, M., Sabourau, S.: Hyperelliptic surfaces are Loewner. Proc. Amer. Math. Soc. 134(4), 1189–1195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katz, M., Sabourau, S.: Dyck’s surfaces, systoles, and capacities. Trans. Amer. Math. Soc. 367(6), 4483–4504 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahler, K.: On lattice points in polar reciprocal convex domains. Nederl. Akad. Wetensch., Proc. 51, 176–179 = Indagationes Math. 51, 482–485. (1948)

  23. Milman, V., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov. Lecture Notes in Mathematics, 1200. Springer-Verlag, Berlin, (1986)

  24. Pansu, P.: Profil isopérimétrique, métriques périodiques et formes d’équilibre des cristaux. ESAIM Control Optim. Calc. Var. 4, 631–665 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pu, P.M.: Some inequalities in certain nonorientable Riemannian manifolds. Pacific J. Math. 2, 55–71 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roos, B.: On Bobkov’s approximate de Finetti representation via approximation of permanents of complex rectangular matrices. Proc. Amer. Math. Soc. 143(4), 1785–1796 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton, N. J. (1957)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Péter Ernő Frenkel for bringing the article by Roos [26] to our attention, to Gennadiy Averkov for bringing the articles [22] and [16] to our attention, and to Oliver Knill, Emanuel Lazar, and Steve Shnider for reading several preliminary versions of the text.

Funding

Mikhail Katz is partially supported by the BSF Grant 2020124 and the ISF Grant 743/22.

Author information

Authors and Affiliations

Authors

Contributions

TG, JH, and MK contributed equally to this work.

Corresponding author

Correspondence to Mikhail G. Katz.

Ethics declarations

Conflict of Interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodwillie, T.G., Hebda, J.J. & Katz, M.G. Extending Gromov’s optimal systolic inequality. J. Geom. 114, 23 (2023). https://doi.org/10.1007/s00022-023-00685-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-023-00685-3

Navigation