Skip to main content
Log in

Ordered metric geometry

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Metric geometry in the sense of Hjelmslev and Bachmann studies metric planes of a very general kind without any assumption about order, continuity and the existence and uniqueness of joining lines. An order structure can be defined in an additional step by introducing a relation of betweenness which satisfies the axioms of order of Hilbert’s Grundlagen der Geometrie, i.e., one-dimensional axioms which characterize the linear order of collinear points and a single plane order axiom which was proposed by Pasch. The Pasch axiom however is based on the assumption that any two points have a unique joining line. This is not necessarily satisfied by Cayley–Klein geometries (e.g. by Minkowskian planes) and even in plane absolute geometry the Pasch axiom is not a necessary condition for an ordering of the associated field of coordinates (see Sect. 5). The aim of this article is to introduce an order structure for the widest class of metric planes (without any assumption about the existence of joining lines, free mobility or some form of a parallel axiom) and to show that the correspondence between geometrical and algebraical order structures, which is well-known in affine and projective geometry, can be extended to plane absolute geometry. The article closes with a discussion of the role of the Pasch axiom in ordered metric geometry. An axiomatization of ordered metric planes in a first-order language is provided in an Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Heidelberg (1973)

    Book  MATH  Google Scholar 

  2. Bachmann F.: Ebene Spiegelungsgeometrie. BI-Verlag, Mannheim (1989)

    MATH  Google Scholar 

  3. Bachmann F., Behnke H.: Fundamentals of Mathematics, vol. II, Geometry. MIT Press, London (1974)

    Google Scholar 

  4. Blyth T.S.: Lattices and Ordered Algebraic Structures. Springer, London (2005)

    MATH  Google Scholar 

  5. Ewald G.: Geometry: An Introduction. Wadsworth, Belmont (1971)

    MATH  Google Scholar 

  6. Fuchs L.: Partially ordered algebraic systems. Pergamon Press, New York (1963)

    MATH  Google Scholar 

  7. Hessenberg G., Diller J.: Grundlagen der Geometrie. Walter de Gruyter, Berlin (1967)

    MATH  Google Scholar 

  8. Hilbert, D.: Grundlagen der Geometrie. Leipzig, Teubner (1899). Translated by L. Unger, Open Court, La Salle, Ill., under the title: Foundations of Geometry (1971)

  9. Hjelmslev J.: Neue Begründung der ebenen Geometrie. Math. Ann. 64, 449–474 (1907)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hjelmslev, J.: Einleitung in die allgemeine Kongruenzlehre. Danske Vid. Selsk., mat-fys. Medd. 8, Nr. 11 (1929); 10, Nr. 1 (1929); 19, Nr. 12 (1942); 22, Nr. 6, Nr. 13 (1945); 25, Nr. 10 (1949)

  11. Karzel H., Kroll H.-J.: Geschichte der Geometrie seit Hilbert. Wissenschaft-liche Buchgesellschaft, Darmstadt (1988)

    MATH  Google Scholar 

  12. Karzel H., Sörensen K., Windelberg D.: Einführung in die Geometrie. Vandenhoeck Ruprecht, Göttingen (1973)

    MATH  Google Scholar 

  13. Kunze, M.: Angeordnete Hjelmslevsche Geometrie. Diss., Kiel (1975)

  14. Kunze M.: Angeordnete Hjelmslevsche Geometrie. Geometriae Dedicata 10, 92–110 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Oliveira, J.S., Rota, G.-C. (eds.): Selected Papers on Algebra and Topology by Garrett Birkhoff. Birkhäuser, Basel (1987)

  16. Pambuccian V.: Weakly ordered plane geometry. Ann. Univ. Ferrara 56, 91–96 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pambuccian V.: The axiomatics of ordered geometry, I. Ordered incidence spaces. Expositiones Mathematicae 29, 24–66 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pambuccian V., Struve R.: On M.T. Calapso’s characterization of the metric of an absolute plane. J. Geom. 92, 105–116 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pasch, M.: Vorlesungen über neuere Geometrie. Teubner, Leipzig (1882); 2nd edn. J. Springer, Berlin (1926)

  20. Pejas W.: Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie. Math. Ann. 143, 212–235 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pejas W.: Eine algebraische Beschreibung der angeordneten Ebenen mit nichteuklidischer Metrik. Math. Z. 83, 434–457 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sperner E.: Die Ordnungsfunktion einer Geometrie. Math. Ann. 121, 107–130 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  23. Struve H., Struve R.: Lattice theory and metric geometry. Algebra Universalis 58, 461–477 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Struve H., Struve R.: Non-euclidean geometries: the Cayley–Klein approach. J. Geom. 98, 151–170 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Struve H., Struve R.: Ordered groups and ordered geometries. J. Geom. 105, 419–447 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Struve R.: The calculus of reflections and the order relation in hyperbolic geometry. J. Geom. 103, 333–346 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Struve.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struve, R. Ordered metric geometry. J. Geom. 106, 551–570 (2015). https://doi.org/10.1007/s00022-015-0265-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-015-0265-3

Mathematics Subject Classification

Keywords

Navigation