Skip to main content
Log in

Global existence and optimal decay rates for a generic non--conservative compressible two--fluid model

  • Original Paper
  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We investigate global existence and optimal decay rates of a generic non-conservative compressible two–fluid model with general constant viscosities and capillary coefficients, and our main purpose is three–fold: First, for any integer \(\ell \ge 3\), we show that the densities and velocities converge to their corresponding equilibrium states at the \(L^2\) rate \((1+t)^{-\frac{3}{4}}\), and the k(\(\in [1, \ell ]\))–order spatial derivatives of them converge to zero at the \(L^2\) rate \((1+t)^{-\frac{3}{4}-\frac{k}{2}}\), which are the same as ones of the compressible Navier–Stokes–Korteweg system. This can be regarded as non-straightforward generalization from the compressible Navier–Stokes–Korteweg system to the two–fluid model. Compared to the compressible Navier–Stokes–Korteweg system, many new mathematical challenges occur since the corresponding model is non-conservative, and its nonlinear structure is very terrible, and the corresponding linear system cannot be diagonalizable. One of key observations here is that to tackle with the strongly coupling terms, we will introduce the linear combination of the fraction densities (\(\beta ^+\alpha ^+\rho ^++\beta ^-\alpha ^-\rho ^-\)), and explore its good regularity, which is particularly better than ones of two fraction densities (\(\alpha ^\pm \rho ^\pm \)) themselves. Second, the linear combination of the fraction densities (\(\beta ^+\alpha ^+\rho ^++\beta ^-\alpha ^-\rho ^-\)) converges to its corresponding equilibrium state at the \(L^2\) rate \((1+t)^{-\frac{3}{4}}\), and its k(\(\in [1, \ell ]\))–order spatial derivative converges to zero at the \(L^2\) rate \((1+t)^{-\frac{3}{4}-\frac{k}{2}}\), but the fraction densities (\(\alpha ^\pm \rho ^\pm \)) themselves converge to their corresponding equilibrium states at the \(L^2\) rate \((1+t)^{-\frac{1}{4}}\), and the k(\(\in [1, \ell ]\))–order spatial derivatives of them converge to zero at the \(L^2\) rate \((1+t)^{-\frac{1}{4}-\frac{k}{2}}\), which are slower than ones of their linear combination (\(\beta ^+\alpha ^+\rho ^++\beta ^-\alpha ^-\rho ^-\)) and the densities. We think that this phenomenon should owe to the special structure of the system. Finally, for well–chosen initial data, we also prove the lower bounds on the decay rates, which are the same as those of the upper decay rates. Therefore, these decay rates are optimal for the compressible two–fluid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bear, J.: Dynamics of fluids in porous media, environmental science series. Elsevier, New York,: (reprinted with corrections, p. 1988. Dover, New York (1972)

  2. Bian, D.F., Yao, L., Zhu, C.J.: Vanishing capillarity limit of the compressible fluid model of Korteweg type to the Navier–Stokes equations. SIAM J. Math. Anal. 46, 1633–1650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brennen, C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  4. Bresch, D., Desjardins, B., Ghidaglia, J.-M., Grenier, E.: Global weak solutions to a generic two-fluid model. Arch. Rational Mech. Anal. 196, 599–6293 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bresch, D., Huang, X.D., Li, J.: Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system. Commun. Math. Phys. 309, 737–755 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Charve, F., Danchin, R., Xu, J.: Gevrey analyticity and decay for the compressible Navier–Stokes system with capillarity, , 2018, Indiana Univ. Math. J. (2021), in press arXiv:1805.01764

  7. Cui, H.B., Wang, W.J., Yao, L., Zhu, C.J.: Decay rates of a nonconservative compressible generic two-fluid model. SIAM J. Math. Anal. 48, 470–512 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rates for the compressible Navier–Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evje, S., Fl\(\mathring{a}\)tten, T.: Hybrid flux- two-fluid model, J. Comput. Phys. 192, 175–210 (2003)

  11. Evje, S., Fl\(\mathring{a}\)tten, T.: Weakly implicit numerical schemes for a two–fluid model, SIAM J. Sci. Comput. 26(5) 1449–1484 (2005)

  12. Evje, S., Fl\(\mathring{a}\)tten, T.: On the wave structure of two–phase flow models, SIAM J. Appl. Math. 67 487–511 (2006)

  13. Evje, S., Wang, W.J., Wen, H.Y.: Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model. Arch. Rational Mech. Anal. 221, 2352–2386 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friis, H.A., Evje, S., Fl\(\mathring{a}\)tten, T.: A numerical study of characteristic slow–transient behavior of a compressible 2D gas–liquid two–fluid model, Adv. Appl. Math. Mech. 1, 166–200 (2009)

  15. Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative Sobolev spaces. Comm. Partial Differ. Equ. 37(12), 2165–2208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, F.M., Hong, K., Shi, X.D.: Existence of smooth solutions for the compressible barotropic Navier–Stokes-Korteweg system without increasing pressure law. Math. Meth. Appl. Sci. 43, 5073–5076 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishii, M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975)

    MATH  Google Scholar 

  18. Kawashima, S., Shibata, Y., Xu, J.: The \(L^p\) energy methods and decay for the compressible Navier–Stokes equations with capillarity. J. Math. Pures Appl. 9(154), 146–184 (2021)

    Article  MATH  Google Scholar 

  19. Kenig, C., Ponce, G.G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-De Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kobayashi, T.: Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in \( {\mathbb{R} }^3\). J. Differ. Eq. 184, 587–619 (2002)

    Article  ADS  MATH  Google Scholar 

  21. Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \({\mathbb{R} }^{3}\). Comm. Math. Phys. 200, 621–659 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat conductive fluids. Proc. Japan Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  24. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  25. Prosperetti, A., Tryggvason, G.: Computational methods for multiphase flow. Cambridge University Press, (2007)

  26. Rajagopal, K.R., Tao, L.: Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, Vol. 35, World Scientific, (1995)

  27. Vasseur, A., Wen, H.Y., Yu, C.: Global weak solution to the viscous two-fluid model with finite energy. J. Math. Pures Appl. 125, 247–282 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y.J., Tan, Z.: Optimal decay rates for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 379, 256–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wen, H.Y., Yao, L., Zhu, C.J.: A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum. J. Math. Pures Appl. 97, 204–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yao, L., Zhu, C.J.: Existence and uniqueness of global weak solution to a two-phase flow model with vacuum. Math. Ann. 349, 903–928 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y.H., Zhu, C.J.: Global existence and optimal convergence rates for the strong solutions in \(H^2\) to the 3D viscous liquid-gas two-phase flow model. J. Differ. Eq. 258, 2315–2338 (2015)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Yin li’s research is partially supported by National Natural Science Foundation of China \(\#\)11926354, Natural Science Foundation of Guangdong Province \(\#\)2021A1515010292, and Innovative team project of Guangdong Province \(\#\)2020KCXTD024. Huaqiao Wang’s research is partially supported by National Natural Science Foundation of China \(\#\) 11901066, Natural Science Foundation of Chongqing \(\#\) cstc2019jcyj-msxmX0167 and Project \(\#\) 2019CDXYST0015 and \(\#\) 2020 CDJQY-A040 supported by the Fundamental Research Funds for the Central Universities. Guochun Wu’s research is partially supported by National Natural Science Foundation of China \(\#\)12271114, Natural Science Foundation of Fujian Province \(\#\) 2022J01304 and Program for Innovative Research Team in Science and Technology in Fujian Province University Quanzhou High-Level Talents Support Plan \(\#\)2017ZT012. Yinghui Zhang’ research is partially supported by National Natural Science Foundation of China \(\#\)12271114, Guangxi Natural Science Foundation \(\#\)2019JJG110003, \(\#\)2019AC20214, and Key Laboratory of Mathematical and Statistical Model (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by D. Bresch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Analytic Tools

Appendix A: Analytic Tools

We recall the Sobolev interpolation of the Gagliardo–Nirenberg inequality.

Lemma A.1

Let \(0\le i, j\le k\), then we have

$$\begin{aligned} \left\| \nabla ^i f\right\| _{L^p}\lesssim \left\| \nabla ^jf\right\| _{L^q}^{1-a}\left\| \nabla ^k f\right\| _{L^r}^a \end{aligned}$$

where a satisfies

$$\begin{aligned} \frac{i}{3}-\frac{1}{p}=\left( \frac{j}{3} -\frac{1}{q}\right) (1-a)+\left( \frac{k}{3}-\frac{1}{r}\right) a. \end{aligned}$$

Especially, while \(p=q=r=2\), we have

$$\begin{aligned} \left\| \nabla ^if\right\| _{L^2}\lesssim \left\| \nabla ^jf\right\| _{L^2}^\frac{k-i}{k-j}\left\| \nabla ^kf\right\| _{L^2}^\frac{i-j}{k-j}. \end{aligned}$$

Proof

This is a special case of [24, pp. 125, THEOREM]. \(\square \)

Next, to estimate the \(L^p\)–norm of the spatial derivatives of the product of two functions, we shall recall the following estimate:

Lemma A.2

For any integer \(k\ge 1\), we have

$$\begin{aligned} \left\| \nabla ^k(fg)\right\| _{L^p} \lesssim \left\| f\right\| _{L^{p_1}}\left\| \nabla ^kg\right\| _{L^{p_2}} +\left\| \nabla ^kf\right\| _{L^{p_3}}\left\| g\right\| _{L^{p_4}}, \end{aligned}$$

and

$$\begin{aligned} \left\| \nabla ^k(fg)-f\nabla ^kg\right\| _{L^p} \lesssim \left\| \nabla f\right\| _{L^{p_1}}\left\| \nabla ^{k-1}g\right\| _{L^{p_2}} +\left\| \nabla ^kf\right\| _{L^{p_3}}\left\| g\right\| _{L^{p_4}}, \end{aligned}$$

where \(p, p_1, p_{2}, p_{3}, p_{4} \in [1, \infty ]\) and

$$\begin{aligned} \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}+\frac{1}{p_{4}}. \end{aligned}$$

Proof

See [19]. \(\square \)

Finally, the following two lemmas concern the estimate for the low–frequency part and the high–frequency part of f.

Lemma A.3

If \(f\in L^r({\mathbb {R}}^3)\) for any \(2\le r\le \infty \), then we have

$$\begin{aligned} \Vert f^l\Vert _{L^r}+\Vert f^h\Vert _{L^r}\lesssim \Vert f\Vert _{L^r}. \end{aligned}$$

Proof

For \(2\le r\le \infty \), by virtue of Young’s inequality for convolutions, for the low frequency, it holds that

$$\begin{aligned} \Vert f^l\Vert _{L^r}\lesssim \Vert {\mathfrak {F}}^{-1}\phi \Vert _{L^1}\Vert f\Vert _{L^r}\lesssim \Vert f\Vert _{L^r}, \end{aligned}$$

and hence

$$\begin{aligned} \Vert f^h\Vert _{L^r}\lesssim \Vert f\Vert _{L^r}+\Vert f^l\Vert _{L^r}\lesssim \Vert f\Vert _{L^r}. \end{aligned}$$

\(\square \)

Lemma A.4

Let \(f\in H^k({\mathbb {R}}^3)\) for any integer \(k\ge 2\). Then there exists a positive constant \(C_0\) such that

$$\begin{aligned} \Vert \nabla ^j f^h\Vert _{L^2}\le C_0 \Vert \nabla ^{j+1}f\Vert _{L^2}, \end{aligned}$$

and

$$\begin{aligned} \Vert \nabla ^{j+1} f^l\Vert _{L^2}\le C_0\Vert \nabla ^{j}f\Vert _{L^2}, \end{aligned}$$

for any \(0\le j\le k-1\).

Proof

This lemma can be shown directly by the definitions of the low–frequency and high–frequency of f and the Plancherel theorem, and thus we omit the details. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, H., Wu, G. et al. Global existence and optimal decay rates for a generic non--conservative compressible two--fluid model. J. Math. Fluid Mech. 25, 77 (2023). https://doi.org/10.1007/s00021-023-00822-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00822-7

Keywords

Mathematics Subject Classification

Navigation