Skip to main content
Log in

A Highly Nonlinear Shallow-Water Model Arising from the Full Water Waves with the Coriolis Effect

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present paper we apply the method of double asymptotic expansion to formally derive a highly nonlinear shallow-water model propagating in the equatorial ocean regions with the Coriolis effect due to the Earth’s rotation. The asymptotic procedures of the derivation of this equation needs to be implemented under a suitable scaling, which is proved to be optimal in the sense that there are no non-local terms in the equation of the surface elevation. Moreover, we give the local well-posedness of the corresponding Cauchy problem and wave breaking criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Chen, R.M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect. Adv. Math. 340, 106–137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, R.M., Hu, T., Liu, Y.: The shallow-water models with cubic nonlinerity. J. Math. Fluid Mech. 24(49), 31 (2022)

    Google Scholar 

  4. Chen, Y., Huang, L., Liu, Y.: On the modelling of shallow-water waves with the Coriolis effect. J. Nonlinear Sci. 30, 93–135 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  ADS  Google Scholar 

  6. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Commun. Math. Phys. 370, 1–48 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Constantin, A., Johnson, R.S.: On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves. J. Nonlinear Math. Phys. 15(suppl. 2), 58–73 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Johnson, R.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Rational Mech. Anal. 192, 165–186 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Molinet, L.: The initial value problem for a generalized Boussinesq equation. Differ. Integral Equ. 15, 1061–1072 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Strauss, W.: Stability of the Camassa-Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dai, H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127, 193–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  16. Duruk Mutlubas, N., Geyer, A., Quirchmayr, R.: Well-posedness of a highly nonlinear shallow water equation on the circle. Nonlinear Anal. 197, 111849, (2020)

  17. Gallagher, I., Saint-Raymond, L.: On the influence of the Earth’s rotation on geophysical flows. Handbook Math. Fluid Mech. 4, 201–329 (2007)

    MathSciNet  Google Scholar 

  18. Geyer, A., Quirchmayr, R.: Shallow water equations for equatorial tsunami waves. Phil. Trans. R. Soc. A 376, 20170100 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gui, G., Liu, Y., Luo, T.: Model equations and traveling wave solutions for shallow-water waves with the Coriolis effect. J. Nonlinear Sci. 29, 993–1039 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gui, G., Liu, Y., Sun, J.: A nonlocal shallow-water model arising from the full water waves with the Coriolis effect. J. Math. Fluid Mech. 21(27), 29 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Huang, L., Mu, C.: A nonlocal shallow-water model with the weak Coriolis and equatorial undercurrent effects. J. Differ. Equ. 269, 6794–6829 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ionescu-Kruse, D.: Variational derivation of a geophysical Camassa-Holm type shallow water equation. Nonlinear Anal. 156, 286–294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ivanov, R.: Hamiltonian model for coupled surface and internal waves in the presence of currents. Nonlinear Anal.-Real World Appl. 34, 316-334, (2017)

  24. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  25. Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Johnson, R.S.: The classical problem of water waves: a reservoir of integrable and nearly-integrable equations. J. Nonlinear Math. Phys. 10(suppl. 1), 72–92 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations, Lecture Notes in Mathmetics, Vol. 448, Springer, Berlin (1975) 25-70

  28. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics. American Math Soceity, Providence (2013)

    Book  MATH  Google Scholar 

  30. Quirchmayr, R.: A new highly nonlinear shallow water wave equation. J. Evol. Equ. 16, 539–567 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, T.: Low-regularity global solutions to nonlinear dispersive equations. Surveys in Analysis and Operator Theory. Proc. Centre Math. Appl. Austral. Nat. Univ. (2002) 19–48

  32. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1980)

    MATH  Google Scholar 

  33. Yang, S., Xu, T.: Well-posedness and persistence property for a shallow water wave equation for waves of large amplitude. Appl. Anal. 98, 981–990 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, S.: Well-posedness and wave breaking for a shallow water wave model with large amplitude. J. Evol. Equ. 20, 141–163 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by National Nature Science Foundation of China under Grant 12001528. The authors thank the anonymous referee for helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxing Liu.

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we provide a detailed computation of the orders \(O(\varepsilon ^{5}\mu ^{0}),O(\varepsilon ^{6}\mu ^{0})\) \( \text{ and }\ O(\varepsilon ^{3}\mu ^{1})\)-approximation. From the fifth equality of (2.5), we obtain

$$\begin{aligned} \eta _{30,\tau }= & {} 2c_{1}(\eta _{00}\eta _{30}+\eta _{10}\eta _{20})_{\xi }+\frac{(3c+2c_{1})(c+c_{1})}{c+\Omega }(\eta ^{2}_{00}\eta _{20}+\eta _{00}\eta ^{2}_{10})_{\xi }\nonumber \\{} & {} +\frac{64 cc_{1}+24c_{1}^{2}+45c^{2}-15}{6(\Omega +c)}(c+c_{1})(\eta ^{3}_{00}\eta _{10})_{\xi }+\frac{B_{2}}{2(\Omega +c)}(\eta ^{5}_{00})_{\xi }. \end{aligned}$$
(4.1)

It follows from \(u_{40,\xi }=c\eta _{40,\xi }-\eta _{30,\tau }-(u_{00}\eta _{30}+u_{10}\eta _{20}+u_{20}\eta _{10}+u_{30}\eta _{00})_{\xi }\) in [20] and (4.1) that

$$\begin{aligned} u_{40,\xi }= & {} c\eta _{40,\xi }-2(c+c_{1})(\eta _{00}\eta _{30}+\eta _{10}\eta _{20})_{\xi }-\frac{2c_{1}-3\Omega }{\Omega +c}(c+c_{1})(\eta ^{2}_{00}\eta _{20}+\eta _{00}\eta ^{2}_{10})_{\xi }\\{} & {} -\frac{64 cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3}{6(\Omega +c)^{2}}(c+c_{1})(\eta ^{3}_{00}\eta _{10})_{\xi }-B_{3}(\eta ^{5}_{00})_{\xi }, \end{aligned}$$

with

$$\begin{aligned} B_{3}=\frac{B_{2}}{2(\Omega +c)}-\frac{64 cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3}{24(\Omega +c)^{2}}(c+c_{1}), \end{aligned}$$

which implies

$$\begin{aligned} u_{40}= & {} c\eta _{40}-2(c+c_{1})(\eta _{00}\eta _{30}+\eta _{10}\eta _{20})-\frac{2c_{1}-3\Omega }{\Omega +c}(c+c_{1})(\eta ^{2}_{00}\eta _{20}+\eta _{00}\eta ^{2}_{10})\nonumber \\{} & {} -\frac{64 cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3}{6(\Omega +c)^{2}}(c+c_{1})\eta ^{3}_{00}\eta _{10}-B_{3}\eta ^{5}_{00}. \end{aligned}$$
(4.2)

It thus deduces from (4.1) that

$$\begin{aligned} u_{40,\tau }= & {} c\eta _{40,\tau }-4c_{1}(c+c_{1})(\eta ^{2}_{00}\eta _{30}+2\eta _{00}\eta _{10}\eta _{20}+\frac{1}{3}\eta ^{3}_{10})_{\xi }\nonumber \\{} & {} -\frac{2(3c^{2}+5c c_{1}+4c_{1}^{2}-3\Omega c_{1})}{\Omega +c}(c+c_{1})(\eta ^{3}_{00}\eta _{20}+\frac{3}{2}\eta ^{2}_{00}\eta ^{2}_{10})_{\xi }\nonumber \\{} & {} -B_{1}(\eta ^{4}_{00}\eta _{10})_{\xi }-B_{4}\eta ^{5}_{00}\eta _{00,\xi }, \end{aligned}$$
(4.3)

with

$$\begin{aligned} B_{4}= & {} \frac{5B_{2}(c+c_{1})}{\Omega +c}+\frac{(2c_{1}-3\Omega )(64 cc_{1}+24c_{1}^{2}+45c^{2}-15)}{6(\Omega +c)^{3}}(c+c_{1})^{2}\\{} & {} +\frac{(2c_{1}+3c)(64 cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3)}{6(\Omega +c)^{3}}(c+c_{1})^{2}\\= & {} -\frac{3c^{4}(c^{2}-2)(37c^{12}-145c^{10}+366c^{8}-378c^{6}+399c^{4}-121c^{2}+66)}{4(c^{2}+1)^{8}}. \end{aligned}$$

For the order \(O(\varepsilon ^{5}\mu ^{0})\) terms of the governing equations (2.2), we obtain from the Taylor expansion (2.3) that

$$\begin{aligned} {\left\{ \begin{array}{ll} -cu_{50,\xi }+u_{40,\tau }+u_{40}u_{00,\xi }+u_{30}u_{10,\xi }+u_{20}u_{20,\xi }+u_{10}u_{30,\xi }\\ +u_{00}u_{40,\xi }+2\Omega W_{50}=-p_{50,\xi }, &{}{ in} \ 0<z<1,\\ 2\Omega u_{50}=p_{50,z}, &{}{ in} \ 0<z<1,\\ u_{50,\xi }+W_{50,z}=0, &{}{ in} \ 0<z<1,\\ u_{50,z}=0, &{}{ in} \ 0<z<1,\\ p_{50}+p_{40,z}\eta _{00}+p_{30,z}\eta _{10}+p_{20,z}\eta _{20}+p_{10,z}\eta _{30}+p_{00,z}\eta _{40}=\eta _{50}, &{}{ on} \ z=1,\\ W_{50}+W_{40,z}\eta _{00}+W_{30,z}\eta _{10}+W_{20,z}\eta _{20}+W_{10,z}\eta _{30}+W_{00,z}\eta _{40}\\ =-c\eta _{50,\xi }+\eta _{40,\tau }+u_{40}\eta _{00,\xi }+u_{30}\eta _{10,\xi }+u_{20}\eta _{20,\xi }+u_{10}\eta _{30,\xi }+u_{00}\eta _{40,\xi }, &{}{ on} \ z=1,\\ W_{50}=0, &{}{ on} \ z=0.\\ \end{array}\right. } \end{aligned}$$
(4.4)

In view of the fourth equation in (4.4), we find that \(u_{50}\) is independent of z, so \(u_{50}=u_{50}(\tau ,\xi ).\) Due to the third equation in (4.4) and the boundary condition of \(W_{50}\) on \(z=0\) and \(z=1\), we get

$$\begin{aligned} W_{50}=W_{50}|_{z=0}+\int _{0}^{z}W_{50,z^{'}}dz^{'}=-zu_{50,\xi }, \end{aligned}$$
(4.5)

and

$$\begin{aligned} W_{50}|_{z=1}=-c\eta _{50,\xi }+\eta _{40,\tau }+(u_{40}\eta _{00}+u_{30}\eta _{10}+u_{20}\eta _{20}+u_{10}\eta _{30}+u_{00}\eta _{40})_{\xi }. \end{aligned}$$

Hence, we obtain

$$\begin{aligned} u_{50,\xi }=c\eta _{50,\xi }-\eta _{40,\tau }-(u_{40}\eta _{00}+u_{30}\eta _{10}+u_{20}\eta _{20}+u_{10}\eta _{30}+u_{00}\eta _{40})_{\xi }, \end{aligned}$$
(4.6)

and then

$$\begin{aligned} W_{50}=z(-c\eta _{50,\xi }+\eta _{40,\tau }+(u_{40}\eta _{00}+u_{30}\eta _{10}+u_{20}\eta _{20}+u_{10}\eta _{30}+u_{00}\eta _{40})_{\xi }). \end{aligned}$$

On the other hand, taking account of the second and the fifth equation in (4.4), we have

$$\begin{aligned} p_{50}= & {} p_{50}|_{z=1}+\int _{1}^{z}p_{50,z^{'}}dz^{'}\\= & {} \eta _{50}-2\Omega (u_{40}\eta _{00}+u_{30}\eta _{10}+u_{20}\eta _{20}+u_{10}\eta _{30}+u_{00}\eta _{40})+2\Omega (z-1)u_{50}, \end{aligned}$$

and then

$$\begin{aligned} p_{50,\xi }=\eta _{50,\xi }-2\Omega (u_{40}\eta _{00}+u_{30}\eta _{10}+u_{20}\eta _{20}+u_{10}\eta _{30}+u_{00}\eta _{40})_{\xi }+2\Omega (z-1)u_{50,\xi }. \end{aligned}$$
(4.7)

On account of the first equation in (4.4), we deduce from (4.5) that

$$\begin{aligned} -p_{50,\xi }=-cu_{50,\xi }+u_{40,\tau }+(u_{00}u_{40}+u_{10}u_{30}+\frac{1}{2}u^{2}_{20})_{\xi }-2\Omega zu_{50,\xi }. \end{aligned}$$
(4.8)

Combining (4.7) with (4.8), we have

$$\begin{aligned} \eta _{50,\xi }- & {} 2\Omega (u_{40}\eta _{00}+u_{30}\eta _{10}+u_{20}\eta _{20}+u_{10}\eta _{30}+u_{00}\eta _{40})_{\xi }-(c+2\Omega )u_{50,\xi }\\+ & {} u_{40,\tau }+(u_{00}u_{40}+u_{10}u_{30}+\frac{1}{2}u^{2}_{20})_{\xi }=0. \end{aligned}$$

Thanks to (4.3) and (4.6), we obtain

$$\begin{aligned} 2(\Omega+ & {} c)\eta _{40,\tau }+3c^{2}(\eta _{00}\eta _{40}+\eta _{10}\eta _{30}+\frac{1}{2}\eta ^{2}_{20})_{\xi }-2(3c+2c_{1})(c+c_{1})(\eta ^{2}_{00}\eta _{30}\\+ & {} 2\eta _{00}\eta _{10}\eta _{20}+\frac{1}{3}\eta ^{3}_{10})_{\xi }-\frac{64cc_{1}+24c_{1}^{2}+45c^{2}-15}{3(\Omega +c)}(c+c_{1})(\eta ^{3}_{00}\eta _{20}+\frac{3}{2}\eta ^{2}_{00}\eta ^{2}_{10})_{\xi }\\- & {} 5B_{2}(\eta ^{4}_{00}\eta _{10})_{\xi }-B_{5}(\eta ^{6}_{00})_{\xi }=0, \end{aligned}$$

with

$$\begin{aligned} B_{5}= & {} \frac{1}{6}B_{4}-\frac{64 cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3}{24(\Omega +c)^{2}}(c+c_{1})^{2}-\frac{(2c_{1}-3\Omega )^{2}(c+c_{1})^{2}}{18(\Omega +c)^{2}}+2cB_{3}\\= & {} -\frac{c^{2}(c^{2}-2)(17c^{14}-112c^{12}+281c^{10}-434c^{8}+367c^{6}-224c^{4}+63c^{2}-14)}{8(c^{2}+1)^{8}}, \end{aligned}$$

which leads to

$$\begin{aligned} \eta _{40,\tau }= & {} 2c_{1}(\eta _{00}\eta _{40}+\eta _{10}\eta _{30}+\frac{1}{2}\eta ^{2}_{20})_{\xi }+\frac{3c+2c_{1}}{\Omega +c}(c+c_{1})(\eta ^{2}_{00}\eta _{30}+2\eta _{00}\eta _{10}\eta _{20}+\frac{1}{3}\eta ^{3}_{10})_{\xi }\nonumber \\{} & {} +\frac{64cc_{1}+24c_{1}^{2}+45c^{2}-15}{6(\Omega +c)^{2}}(c+c_{1})(\eta ^{3}_{00}\eta _{20}+\frac{3}{2}\eta ^{2}_{00}\eta ^{2}_{10})_{\xi }+\frac{5B_{2}}{2(\Omega +c)}(\eta ^{4}_{00}\eta _{10})_{\xi }\nonumber \\{} & {} +\frac{B_{5}}{2(\Omega +c)}(\eta ^{6}_{00})_{\xi }. \end{aligned}$$
(4.9)

Therefore, we have

$$\begin{aligned} u_{50,\xi }= & {} c\eta _{50,\xi }-2(c+c_{1})(\eta _{00}\eta _{40}+\eta _{10}\eta _{30}+\frac{1}{2}\eta ^{2}_{20})_{\xi }-\frac{2c_{1}-3\Omega }{\Omega +c}(c+c_{1})(\eta ^{2}_{00}\eta _{30}+2\eta _{00}\eta _{10}\eta _{20}\\{} & {} +\frac{1}{3}\eta ^{3}_{10})_{\xi }-\frac{64cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3}{6(\Omega +c)^{2}}(c+c_{1})(\eta ^{3}_{00}\eta _{20}+\frac{3}{2}\eta ^{2}_{00}\eta ^{2}_{10})_{\xi }\\{} & {} -5B_{3}(\eta ^{4}_{00}\eta _{10})_{\xi }-(\frac{B_{5}}{2(\Omega +c)}-B_{3})(\eta ^{6}_{00})_{\xi }, \end{aligned}$$

which along with the far field conditions \(\eta _{00},\eta _{10},\eta _{20},\eta _{30},\eta _{40}\rightarrow 0\) as \(|\xi |\rightarrow \infty \) gives

$$\begin{aligned} u_{50}= & {} c\eta _{50}-2(c+c_{1})(\eta _{00}\eta _{40}+\eta _{10}\eta _{30}+\frac{1}{2}\eta ^{2}_{20})-\frac{2c_{1}-3\Omega }{\Omega +c}(c+c_{1})(\eta ^{2}_{00}\eta _{30}+2\eta _{00}\eta _{10}\eta _{20}+\frac{1}{3}\eta ^{3}_{10})\nonumber \\{} & {} -\frac{64cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3}{6(\Omega +c)^{2}}(c+c_{1})(\eta ^{3}_{00}\eta _{20}+\frac{3}{2}\eta ^{2}_{00}\eta ^{2}_{10})-5B_{3}\eta ^{4}_{00}\eta _{10}\nonumber \\{} & {} -(\frac{B_{5}}{2(\Omega +c)}-B_{3})\eta ^{6}_{00}. \end{aligned}$$
(4.10)

Thanks to (4.1) and (4.9), we deduce that

$$\begin{aligned} u_{50,\tau }= & {} c\eta _{50,\tau }-4c_{1}(c+c_{1})(\eta ^{2}_{00}\eta _{40}+\eta ^{2}_{10}\eta _{20}+\eta _{00}\eta ^{2}_{20}+2\eta _{00}\eta _{10}\eta _{30})_{\xi }\nonumber \\{} & {} -\frac{2(3c^{2}+5c c_{1}+4c_{1}^{2}-3\Omega c_{1})}{\Omega +c}(c+c_{1})(\eta ^{3}_{00}\eta _{30}+\eta _{00}\eta ^{3}_{10}+3\eta ^{2}_{00}\eta _{10}\eta _{20})_{\xi }\nonumber \\{} & {} -B_{1}(\eta ^{4}_{00}\eta _{20}+2\eta ^{3}_{00}\eta ^{2}_{10})_{\xi }-B_{4}(\eta ^{5}_{00}\eta _{10})_{\xi }-B_{6}\eta ^{6}_{00}\eta _{00,\xi }, \end{aligned}$$
(4.11)

with

$$\begin{aligned}{} & {} B_{6}=\frac{6c_{1}B_{5}}{\Omega +c}-12c_{1}B_{3}+\frac{6B_{5}(c+c_{1})}{\Omega +c}+\frac{5(2c_{1}-3\Omega )(c+c_{1})B_{2}}{2(\Omega +c)^{2}} +\frac{5(2c_{1}+3c)B_{3}}{\Omega +c}(c+c_{1})\\{} & {} +\frac{(64 cc_{1}+24c_{1}^{2}+45c^{2}-15)(64 cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3)}{36(\Omega +c)^{4}}(c+c_{1})^{2}\\= & {} \frac{7c^{4}(c^{2}-2)(99c^{16}-540c^{14}+1587c^{12}-2540c^{10}+3109c^{8}-2084c^{6}+1297c^{4}-308c^{2}+100)}{8(c^{2}+1)^{10}}. \end{aligned}$$

For the order \(O(\varepsilon ^{6}\mu ^{0})\) terms of the governing equations (2.2), we deduce from the Taylor expansion (2.3) that

$$\begin{aligned} {\left\{ \begin{array}{ll} -cu_{60,\xi }+u_{50,\tau }+u_{50}u_{00,\xi }+u_{40}u_{10,\xi }+u_{30}u_{20,\xi }+u_{20}u_{30,\xi }+u_{10}u_{40,\xi }\\ +u_{00}u_{50,\xi }+2\Omega W_{60}=-p_{60,\xi }, &{}{ in} \ 0<z<1,\\ 2\Omega u_{60}=p_{60,z}, &{}{ in} \ 0<z<1,\\ u_{60,\xi }+W_{60,z}=0, &{}{ in} \ 0<z<1,\\ u_{60,z}=0, &{}{ in} \ 0<z<1,\\ p_{60}+p_{50,z}\eta _{00}+p_{40,z}\eta _{10}+p_{30,z}\eta _{20}+p_{20,z}\eta _{30}+p_{10,z}\eta _{40}+p_{00,z}\eta _{50}=\eta _{60}, &{}{ on} \ z=1,\\ W_{60}+W_{50,z}\eta _{00}+W_{40,z}\eta _{10}+W_{30,z}\eta _{20}+W_{20,z}\eta _{30}+W_{10,z}\eta _{40}+W_{00,z}\eta _{50}\\ =-c\eta _{60,\xi }+\eta _{50,\tau }+u_{50}\eta _{00,\xi }+u_{40}\eta _{10,\xi }+u_{30}\eta _{20,\xi }+u_{20}\eta _{30,\xi }+u_{10}\eta _{40,\xi }\\ +u_{00}\eta _{50,\xi }, &{}{ on} \ z=1,\\ W_{60}=0, &{}{ on} \ z=0.\\ \end{array}\right. } \end{aligned}$$
(4.12)

From the fourth equation in (4.12), \(u_{60}\) is independent of z, that is, \(u_{60}=u_{60}(\tau ,\xi ).\) Thanks to the third equation in (4.12) and the boundary condition of \(W_{60}\) on \(z=0\) and \(z=1\), we get

$$\begin{aligned} W_{60}=W_{60}|_{z=0}+\int _{0}^{z}W_{60,z^{'}}dz^{'}=-zu_{60,\xi }, \end{aligned}$$
(4.13)

and

$$\begin{aligned} W_{60}|_{z=1}=-c\eta _{60,\xi }+\eta _{50,\tau }+(u_{50}\eta _{00}+u_{40}\eta _{10}+u_{30}\eta _{20}+u_{20}\eta _{30}+u_{10}\eta _{40}+u_{00}\eta _{50})_{\xi }. \end{aligned}$$

Thus, we obtain

$$\begin{aligned} u_{60,\xi }=c\eta _{60,\xi }-\eta _{50,\tau }-(u_{50}\eta _{00}+u_{40}\eta _{10}+u_{30}\eta _{20}+u_{20}\eta _{30}+u_{10}\eta _{40}+u_{00}\eta _{50})_{\xi }. \end{aligned}$$
(4.14)

On the other hand, thanks to the second and the fifth equation in (4.12), we deduce that

$$\begin{aligned} p_{60}= & {} p_{60}|_{z=1}+\int _{1}^{z}p_{60,z^{'}}dz^{'}\\= & {} \eta _{60}-2\Omega (u_{50}\eta _{00}+u_{40}\eta _{10}+u_{30}\eta _{20}+u_{20}\eta _{30}+u_{10}\eta _{40}+u_{00}\eta _{50})+2\Omega (z-1)u_{60}, \end{aligned}$$

and then

$$\begin{aligned} p_{60,\xi }=\eta _{60,\xi }-2\Omega (u_{50}\eta _{00}+u_{40}\eta _{10}+u_{30}\eta _{20}+u_{20}\eta _{30}+u_{10}\eta _{40}+u_{00}\eta _{50})_{\xi }+2\Omega (z-1)u_{60,\xi }. \end{aligned}$$
(4.15)

Taking account of the first equation in (4.12), we get

$$\begin{aligned} -p_{60,\xi }=-cu_{60,\xi }+u_{50,\tau }+(u_{00}u_{50}+u_{10}u_{40}+u_{20}u_{30})_{\xi }-2\Omega zu_{60,\xi }. \end{aligned}$$
(4.16)

Combining (4.15) with (4.16), we have

$$\begin{aligned} \eta _{60,\xi }- & {} 2\Omega (u_{50}\eta _{00}+u_{40}\eta _{10}+u_{30}\eta _{20}+u_{20}\eta _{30}+u_{10}\eta _{40}+u_{00}\eta _{50})_{\xi }-(c+2\Omega )u_{60,\xi }\\+ & {} u_{50,\tau }+(u_{00}u_{50}+u_{10}u_{40}+u_{20}u_{30})_{\xi }=0. \end{aligned}$$

Substituting (4.11) and (4.14) into the above formula, we obtain

$$\begin{aligned} 2(\Omega+ & {} c)\eta _{50,\tau }+3c^{2}(\eta _{00}\eta _{50}+\eta _{10}\eta _{40}+\eta _{20}\eta _{30})_{\xi }-2(3c+2c_{1})(c+c_{1})(\eta ^{2}_{00}\eta _{40}+\eta ^{2}_{10}\eta _{20}\nonumber \\+ & {} \eta _{00}\eta ^{2}_{20}+2\eta _{00}\eta _{10}\eta _{30})_{\xi }-\frac{64cc_{1}+24c_{1}^{2}+45c^{2}-15}{3(\Omega +c)}(c+c_{1})(\eta ^{3}_{00}\eta _{30}+\eta _{00}\eta ^{3}_{10}+3\eta ^{2}_{00}\eta _{10}\eta _{20})_{\xi }\nonumber \\- & {} 5B_{2}(\eta ^{4}_{00}\eta _{20}+2\eta ^{3}_{00}\eta ^{2}_{10})_{\xi }-6B_{5}(\eta ^{5}_{00}\eta _{10})_{\xi }-B_{7}(\eta ^{7}_{00})_{\xi }=0, \end{aligned}$$
(4.17)

with

$$\begin{aligned}{} & {} B_{7}=-\frac{(2c_{1}-3\Omega )(64cc_{1}+24c_{1}^{2}+45c^{2}+24\Omega ^{2}-3)}{72(\Omega +c)^{3}}(c+c_{1})^{2} -(3c+c_{1})B_{3}+\frac{cB_{5}}{\Omega +c}+\frac{1}{7}B_{6}\\= & {} \frac{c^{2}(c^{2}-2)(25c^{18}-190c^{16}+617c^{14}-1206c^{12}+1483c^{10}-1274c^{8}+699c^{6}-274c^{4}+56c^{2}-8)}{4(c^{2}+1)^{10}}. \end{aligned}$$

From the sixth equality of (2.5), we get

$$\begin{aligned} \eta _{11,\tau }= & {} 2c_{1}(\eta _{00}\eta _{11}+\eta _{10}\eta _{01})_{\xi }+\frac{(3c+2c_{1})(c+c_{1})}{\Omega +c}(\eta ^{2}_{00}\eta _{01})_{\xi } +\frac{2}{9}c_{1}\eta _{10,\xi \xi \xi }+(-\frac{c_{1}}{9}\nonumber \\{} & {} +\frac{5c c_{1}}{9(\Omega +c)}+\frac{c_{1}^{2}}{9(\Omega +c)})(\eta ^{2}_{00,\xi })_{\xi }+(-\frac{2c_{1}}{9}+\frac{10 cc_{1}}{9(\Omega +c)}+\frac{4c_{1}^{2}}{9(\Omega +c)})(\eta _{00}\eta _{00,\xi \xi })_{\xi }. \end{aligned}$$
(4.18)

In view of the calculation of the order \(O(\varepsilon ^{2}\mu ^{1})\) in [20], we have

$$\begin{aligned} u_{21,\xi }=c\eta _{21,\xi }-\eta _{11,\tau }+(\frac{z^{2}}{2}-\frac{1}{6})H_{1,\xi }-H_{2,\xi }|_{z=1}, \end{aligned}$$

with \(H_{1,\xi }=2(c+c_{1})(\eta ^{2}_{00,\xi }+\eta _{00}\eta _{00,\xi \xi })_{\xi }-c\eta _{10,\xi \xi \xi },\) \(H_{2,\xi }|_{z=1}=2c(\eta _{00}\eta _{11}+\eta _{01}\eta _{10})_{\xi }-(\frac{c}{3}+\frac{2c_{1}}{9}) (\eta _{00}\eta _{00,\xi \xi })_{\xi }-3(c+c_{1})(\eta ^{2}_{00}\eta _{01})_{\xi }.\) Hence,

$$\begin{aligned} u_{21,\xi }= & {} c\eta _{21,\xi }-2(c+c_{1})(\eta _{00}\eta _{11}+\eta _{01}\eta _{10})_{\xi }-\frac{2c_{1}-3\Omega }{\Omega +c}(c+c_{1})(\eta ^{2}_{00}\eta _{01})_{\xi }\\{} & {} +(\frac{c}{6}-\frac{2}{9}c_{1}-\frac{c}{2}z^{2})\eta _{10,\xi \xi \xi }+(z^{2}(c+c_{1})-\frac{c}{3}-\frac{2c_{1}}{9}-\frac{5c c_{1}}{9(\Omega +c)}-\frac{c_{1}^{2}}{9(\Omega +c)})(\eta ^{2}_{00,\xi })_{\xi }\\{} & {} +(z^{2}(c+c_{1})+\frac{c_{1}}{9}-\frac{10c c_{1}}{9(\Omega +c)}-\frac{4c_{1}^{2}}{9(\Omega +c)})(\eta _{00}\eta _{00,\xi \xi })_{\xi }, \end{aligned}$$

which yields

$$\begin{aligned} u_{21}= & {} c\eta _{21}-2(c+c_{1})(\eta _{00}\eta _{11}+\eta _{10}\eta _{01})-\frac{2c_{1}-3\Omega }{\Omega +c}(c+c_{1})\eta _{00}^{2}\eta _{01}\nonumber \\{} & {} +(\frac{c}{6}-\frac{2c_{1}}{9}-\frac{c}{2}z^{2})\eta _{10,\xi \xi }+(z^{2}(c+c_{1})-\frac{c}{3}-\frac{2c_{1}}{9}-\frac{5c c_{1}}{9(\Omega +c)}-\frac{c_{1}^{2}}{9(\Omega +c)})\eta ^{2}_{00,\xi }\nonumber \\{} & {} +(z^{2}(c+c_{1})+\frac{c_{1}}{9}-\frac{10c c_{1}}{9(\Omega +c)}-\frac{4c_{1}^{2}}{9(\Omega +c)})\eta _{00}\eta _{00,\xi \xi }. \end{aligned}$$
(4.19)

Taking the \(\tau \) derivative of the above equality, it then follows from (2.5) that

$$\begin{aligned} u_{21,\tau }= & {} c\eta _{21,\tau }-4c_{1}(c+c_{1})(\eta ^{2}_{00}\eta _{11}+2\eta _{00}\eta _{10}\eta _{01})_{\xi }-\frac{2(3c^{2}+5c c_{1}+4c_{1}^{2}-3\Omega c_{1})}{\Omega +c}(c+c_{1})(\eta _{00}^{3}\eta _{01})_{\xi }\nonumber \\{} & {} +(\frac{cc_{1}}{6}-\frac{2c_{1}^{2}}{9}-\frac{cc_{1}z^{2}}{2})(2\eta _{00}\eta _{10})_{\xi \xi \xi }-\frac{4}{9}c_{1}(c+c_{1})(\eta _{00}\eta _{10,\xi \xi \xi }+\eta _{10}\eta _{00,\xi \xi \xi })\nonumber \\{} & {} +\{-2(c+c_{1})(-\frac{4c_{1}}{9}+\frac{20cc_{1}}{9(\Omega +c)}+\frac{6c_{1}^{2}}{9(\Omega +c)})+\frac{6(2c_{1}+3c)(c+c_{1})}{\Omega +c}(\frac{c}{6}-\frac{2c_{1}}{9}-\frac{c}{2}z^{2})\nonumber \\{} & {} +4c_{1}(z^{2}(c+c_{1})-\frac{c}{3}-\frac{2c_{1}}{9}-\frac{5cc_{1}}{9(\Omega +c)}-\frac{c_{1}^{2}}{9(\Omega +c)})+8c_{1}(z^{2}(c+c_{1})+\frac{c_{1}}{9}-\frac{10cc_{1}}{9(\Omega +c)}\nonumber \\{} & {} -\frac{4c_{1}^{2}}{9(\Omega +c)})\}\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }+\{-2(c+c_{1})(-\frac{2c_{1}}{9}+\frac{10cc_{1}}{9(\Omega +c)}+\frac{4c_{1}^{2}}{9(\Omega +c)})\nonumber \\{} & {} -\frac{2c_{1}}{9}\frac{(2c_{1}-3\Omega )(c+c_{1})}{\Omega +c}+\frac{(2c_{1}+3c)(c+c_{1})}{\Omega +c}(\frac{c}{6}-\frac{2c_{1}}{9}-\frac{c}{2}z^{2})+2c_{1}(z^{2}(c+c_{1})+\frac{c_{1}}{9}\nonumber \\{} & {} -\frac{10cc_{1}}{9(\Omega +c)}-\frac{4c_{1}^{2}}{9(\Omega +c)})\}\eta ^{2}_{00}\eta _{00,\xi \xi \xi }+\{\frac{2(2c_{1}+3c)(c+c_{1})}{\Omega +c}(\frac{c}{6}-\frac{2c_{1}}{9}-\frac{c}{2}z^{2})\nonumber \\{} & {} +4c_{1}(z^{2}(c+c_{1})-\frac{c}{3}-\frac{2c_{1}}{9}-\frac{5cc_{1}}{9(\Omega +c)}-\frac{c_{1}^{2}}{9(\Omega +c)})\}\eta ^{3}_{00,\xi }. \end{aligned}$$
(4.20)

For the order \(O(\varepsilon ^{3}\mu ^{1})\) terms of the governing equations (2.2), we obtain from the Taylor expansion (2.3) that

$$\begin{aligned} {\left\{ \begin{array}{ll} -cu_{31,\xi }+u_{21,\tau }+u_{21}u_{00,\xi }+u_{11}u_{10,\xi }+u_{01}u_{20,\xi }+u_{20}u_{01,\xi }+u_{10}u_{11,\xi }\\ +u_{00}u_{21,\xi }+W_{10}u_{11,z}+W_{00}u_{21,z}+2\Omega W_{31}=-p_{31,\xi }, &{}{ in} \ 0<z<1,\\ -cW_{20,\xi }+W_{10,\tau }+u_{10}W_{00,\xi }+u_{00}W_{10,\xi }+W_{10}W_{00,z}+W_{00}W_{10,z}\\ -2\Omega u_{31}=-p_{31,z}, &{}{ in} \ 0<z<1,\\ u_{31,\xi }+W_{31,z}=0, &{}{ in} \ 0<z<1,\\ u_{31,z}-W_{20,\xi }=0, &{}{ in} \ 0<z<1,\\ p_{31}+p_{21,z}\eta _{00}+p_{11,z}\eta _{10}+p_{01,z}\eta _{20}+p_{20,z}\eta _{01}+p_{10,z}\eta _{11}+p_{00,z}\eta _{21}\\ +p_{11,zz}\frac{1}{2}\eta ^{2}_{00}=\eta _{31}, &{}{ on} \ z=1,\\ W_{31}+W_{21,z}\eta _{00}+W_{11,z}\eta _{10}+W_{01,z}\eta _{20}+W_{20,z}\eta _{01}+W_{10,z}\eta _{11}\\ +W_{00,z}\eta _{21}+W_{11,zz}\frac{1}{2}\eta ^{2}_{00} =-c\eta _{31,\xi }+\eta _{21,\tau }+u_{21}\eta _{00,\xi }+u_{11}\eta _{10,\xi }\\ +u_{01}\eta _{20,\xi }+u_{20}\eta _{01,\xi }+u_{10}\eta _{11,\xi }+u_{00}\eta _{21,\xi }+u_{11,z}\eta _{00}\eta _{00,\xi }, &{}{ on} \ z=1,\\ W_{31}=0, &{}{ on} \ z=0. \end{array}\right. } \end{aligned}$$
(4.21)

It follows from the fourth equation of (4.21) and fifth equation of (2.4) that

$$\begin{aligned} u_{31,z}=W_{20,\xi }=-zu_{20,\xi \xi }=-z(c\eta _{20,\xi \xi }-2(c+c_{1})(\eta _{00}\eta _{10})_{\xi \xi }-\frac{2c_{1}-3\Omega }{3(\Omega +c)}(c+c_{1})(\eta ^{3}_{00})_{\xi \xi }), \end{aligned}$$

which gives

$$\begin{aligned} u_{31}= & {} \frac{z^{2}}{2}(2(c+c_{1})(\eta _{00}\eta _{10})_{\xi \xi }+\frac{2c_{1}-3\Omega }{3(\Omega +c)}(c+c_{1})(\eta ^{3}_{00})_{\xi \xi }-c\eta _{20,\xi \xi })+\Phi _{31}(\tau ,\xi )\\= & {} \frac{z^{2}}{2}H_{3}+\Phi _{31}(\tau ,\xi ), \end{aligned}$$

for some smooth function \(\Phi _{31}(\tau ,\xi )\) independent of z, where we denote

$$\begin{aligned} H_{3}=2(c+c_{1})(\eta _{00}\eta _{10})_{\xi \xi }+\frac{2c_{1}-3\Omega }{3(\Omega +c)}(c+c_{1})(\eta ^{3}_{00})_{\xi \xi }-c\eta _{20,\xi \xi }. \end{aligned}$$

Hence, we have

$$\begin{aligned} u_{31,\xi }=\frac{1}{2}z^{2}H_{3,\xi }+\Phi _{31,\xi }. \end{aligned}$$

On the other hand, thanks to the third equation in (4.21) and the boundary condition of \(W_{31}\) on \(z=0\), we get

$$\begin{aligned} W_{31}=W_{31}|_{z=0}+\int _{0}^{z}W_{31,z^{'}}dz^{'}=-\int _{0}^{z}u_{31,\xi }dz^{'}=-\frac{z^{3}}{6}H_{3,\xi }-z\Phi _{31,\xi }, \end{aligned}$$

which along with the boundary condition of \(W_{31}\) on \(z=1\) leads to

$$\begin{aligned} -\frac{1}{6}H_{3,\xi }-\Phi _{31,\xi }= & {} -c\eta _{31,\xi }+\eta _{21,\tau }+(u_{00}\eta _{21}+u_{10}\eta _{11}+u_{20}\eta _{01}+u_{01}\eta _{20}+u_{11}\eta _{10}+u_{21}\eta _{00})_{\xi }|_{z=1}\\{} & {} -\frac{1}{2}c\eta ^{2}_{00}\eta _{00,\xi \xi \xi }-c\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }\\= & {} -c\eta _{31,\xi }+\eta _{21,\tau }+H_{4,\xi }|_{z=1}-\frac{1}{2}c\eta ^{2}_{00}\eta _{00,\xi \xi \xi }-c\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }, \end{aligned}$$

where we denote

$$\begin{aligned} H_{4}=u_{00}\eta _{21}+u_{10}\eta _{11}+u_{20}\eta _{01}+u_{01}\eta _{20}+u_{11}\eta _{10}+u_{21}\eta _{00}. \end{aligned}$$

It then follows that

$$\begin{aligned} \Phi _{31,\xi }=c\eta _{31,\xi }-\eta _{21,\tau }-\frac{1}{6}H_{3,\xi }-H_{4,\xi }|_{z=1}+\frac{1}{2}c\eta ^{2}_{00}\eta _{00,\xi \xi \xi }+c\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }, \end{aligned}$$
(4.22)

which implies

$$\begin{aligned} u_{31,\xi }=c\eta _{31,\xi }-\eta _{21,\tau }+(\frac{z^{2}}{2}-\frac{1}{6})H_{3,\xi }-H_{4,\xi }|_{z=1}+\frac{1}{2}c\eta ^{2}_{00}\eta _{00,\xi \xi \xi }+c\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }, \end{aligned}$$
(4.23)

and

$$\begin{aligned} W_{31}=\frac{z(1-z^{2})}{6}H_{3,\xi }-cz\eta _{31,\xi }+z\eta _{21,\tau }+z(H_{4,\xi }|_{z=1})-\frac{1}{2}cz\eta ^{2}_{00}\eta _{00,\xi \xi \xi }-cz\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }. \end{aligned}$$
(4.24)

Substituting the expression of \(W_{10,\tau }\), \(u_{10}\), \(W_{00,\xi }\), \(u_{00}\), \(W_{10,\xi }\), \(W_{10}\), \(W_{00,z}\), \(W_{00}\), \(W_{10,z}\) and \(W_{20,\xi }\) into the second equation in (4.21), we obtain

$$\begin{aligned} p_{31,z}= & {} 2\Omega u_{31}-c^{2}z\eta _{20,\xi \xi }+c(3c+4c_{1})z(\eta _{00}\eta _{10,\xi \xi }+\eta _{10}\eta _{00,\xi \xi })\nonumber \\{} & {} +2c(c+4c_{1})z\eta _{00,\xi }\eta _{10,\xi }+\{2z(c+c_{1})(c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})\}\eta _{00}\eta ^{2}_{00,\xi }\nonumber \\{} & {} +\{z(c+c_{1})(-3c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})\}\eta ^{2}_{00}\eta _{00,\xi \xi }. \end{aligned}$$
(4.25)

While from the boundary condition of \(p_{31}\) on \(z=1\), we have

$$\begin{aligned} p_{31}|_{z=1}= & {} \eta _{31}-2\Omega H_{4}|_{z=1}+c^{2}(\eta _{00}\eta _{10,\xi \xi }+\eta _{10}\eta _{00,\xi \xi })-c(c+4c_{1})\eta _{00}\eta ^{2}_{00,\xi }\\{} & {} +\{\frac{1}{2}(c+2\Omega c)-c(3c+4c_{1})\}\eta ^{2}_{00}\eta _{00,\xi \xi }, \end{aligned}$$

which along with (4.25) leads to

$$\begin{aligned}{} & {} p_{31}=p_{31}|_{z=1}+\int ^{z}_{1}p_{31,z^{'}}dz^{'} =\eta _{31}-2\Omega H_{4}|_{z=1}+2\Omega \int ^{z}_{1}u_{31}dz^{'}-\frac{c^{2}}{2}(z^{2}-1)\eta _{20,\xi \xi }\\{} & {} +(c^{2}+\frac{c(3c+4c_{1})}{2}(z^{2}-1))(\eta _{00}\eta _{10,\xi \xi }+\eta _{10}\eta _{00,\xi \xi })+c(c+4c_{1})(z^{2}-1)\eta _{00,\xi }\eta _{10,\xi }\\{} & {} +\{(z^{2}-1)(c+c_{1})(c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})-c(c+4c_{1})\}\eta _{00}\eta ^{2}_{00,\xi }\\{} & {} +\{\frac{1}{2}(z^{2}-1)(c+c_{1})(-3c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})+\frac{c^{2}+2\Omega c}{2}-c(3c+4c_{1})\}\eta ^{2}_{00}\eta _{00,\xi \xi }, \end{aligned}$$

and then

$$\begin{aligned} p_{31,\xi }= & {} \eta _{31,\xi }-2\Omega H_{4,\xi }|_{z=1}+2\Omega \int ^{z}_{1}u_{31,\xi }dz^{'}-\frac{c^{2}}{2}(z^{2}-1)\eta _{20,\xi \xi \xi }\nonumber \\{} & {} +(c^{2}+\frac{c(3c+4c_{1})}{2}(z^{2}-1))(\eta _{00}\eta _{10,\xi \xi }+\eta _{10}\eta _{00,\xi \xi })_{\xi }+c(c+4c_{1})(z^{2}-1)(\eta _{00,\xi }\eta _{10,\xi })_{\xi }\nonumber \\{} & {} +\{(z^{2}-1)(c+c_{1})(c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})-c(c+4c_{1})\}(\eta _{00}\eta ^{2}_{00,\xi })_{\xi }\nonumber \\{} & {} +\{\frac{1}{2}(z^{2}-1)(c+c_{1})(-3c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})\nonumber \\{} & {} +\frac{1}{2}(c^{2}+2\Omega c)-c(3c+4c_{1})\}(\eta ^{2}_{00}\eta _{00,\xi \xi })_{\xi }\nonumber \\= & {} \eta _{31,\xi }-2\Omega zH_{4,\xi }|_{z=1}+\frac{\Omega z}{3}(z^{2}-1)H_{3,\xi }+2\Omega (z-1)(c\eta _{31,\xi }-\eta _{21,\tau })\nonumber \\{} & {} +\Omega c(z-1)\eta ^{2}_{00}\eta _{00,\xi \xi \xi }+2\Omega c(z-1)\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }-\frac{c^{2}}{2}(z^{2}-1)\eta _{20,\xi \xi \xi }\nonumber \\{} & {} +(c^{2}+\frac{c(3c+4c_{1})}{2}(z^{2}-1))(\eta _{00}\eta _{10,\xi \xi }+\eta _{10}\eta _{00,\xi \xi })_{\xi }+c(c+4c_{1})(z^{2}-1)(\eta _{00,\xi }\eta _{10,\xi })_{\xi }\nonumber \\{} & {} +\{(z^{2}-1)(c+c_{1})(c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})-c(c+4c_{1})\}(\eta _{00}\eta ^{2}_{00,\xi })_{\xi } \nonumber \\{} & {} +\{\frac{1}{2}(z^{2}-1)(c+c_{1})(-3c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})\nonumber \\{} & {} +\frac{1}{2}(c^{2}+2\Omega c)-c(3c+4c_{1})\}(\eta ^{2}_{00}\eta _{00,\xi \xi })_{\xi }. \end{aligned}$$
(4.26)

Thanks to the first equation in (4.21), we get

$$\begin{aligned} -p_{31,\xi }= & {} -cu_{31,\xi }+u_{21,\tau }+(u_{00}u_{21}+u_{10}u_{11}+u_{20}u_{01})_{\xi }+c^{2}z^{2}(\eta _{00,\xi }\eta _{10,\xi })_{\xi }\nonumber \\{} & {} -c(c+c_{1})z^{2}(2\eta _{00}\eta ^{2}_{00,\xi })_{\xi }+\frac{\Omega z}{3}(1-z^{2})H_{3,\xi }-2\Omega cz\eta _{31,\xi }+2\Omega z\eta _{21,\tau }\nonumber \\{} & {} +2\Omega z(H_{4,\xi }|_{z=1})-\Omega cz\eta ^{2}_{00}\eta _{00,\xi \xi \xi }-2\Omega cz\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }. \end{aligned}$$
(4.27)

Combining (4.26) with (4.27), we get

$$\begin{aligned} 0= & {} (1-2\Omega c)\eta _{31,\xi }+2\Omega \eta _{21,\tau }-\Omega c\eta ^{2}_{00}\eta _{00,\xi \xi \xi }-2\Omega c\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }-\frac{c^{2}}{2}(z^{2}-1)\eta _{20,\xi \xi \xi }\nonumber \\{} & {} +(c^{2}+\frac{c(3c+4c_{1})}{2}(z^{2}-1))(\eta _{00}\eta _{10,\xi \xi }+\eta _{10}\eta _{00,\xi \xi })_{\xi }+(c(c+4c_{1})(z^{2}-1)+c^{2}z^{2})(\eta _{00,\xi }\eta _{10,\xi })_{\xi }\nonumber \\{} & {} +\{(z^{2}-1)(c+c_{1})(c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})-c(c+4c_{1})-2c(c+c_{1})z^{2}\}(\eta _{00}\eta ^{2}_{00,\xi })_{\xi }\nonumber \\{} & {} +\{\frac{1}{2}(z^{2}-1)(c+c_{1})(-3c-4c_{1}+\frac{c(4c_{1}+3c-3\Omega )}{\Omega +c})+\frac{1}{2}(c^{2}+2\Omega c)-c(3c+4c_{1})\}(\eta ^{2}_{00}\eta _{00,\xi \xi })_{\xi }\nonumber \\{} & {} -cu_{31,\xi }+u_{21,\tau }+(u_{00}u_{21}+u_{10}u_{11}+u_{20}u_{01})_{\xi }. \end{aligned}$$
(4.28)

Notice that

$$\begin{aligned} (u_{00}u_{21}+ & {} u_{10}u_{11}+u_{20}u_{01})_{\xi }\\= & {} c^{2}(\eta _{00}\eta _{21}+\eta _{10}\eta _{11}+\eta _{20}\eta _{01})_{\xi }-3c(c+c_{1})(\eta ^{2}_{00}\eta _{11}+2\eta _{00}\eta _{10}\eta _{01})_{\xi }\\{} & {} +(\frac{-4c(2c_{1}-3\Omega )}{3(\Omega +c)}(c+c_{1})+2(c+c_{1})^{2})(\eta ^{3}_{00}\eta _{01})_{\xi }+(\frac{c^{2}}{6}-\frac{2c c_{1}}{9}-\frac{c^{2}z^{2}}{2})(\eta _{00}\eta _{10,\xi \xi }\\{} & {} +\eta _{10}\eta _{00,\xi \xi })_{\xi }+c(z^{2}(c+c_{1})-\frac{c}{3}-\frac{2c_{1}}{9}-\frac{5cc_{1}}{9(\Omega +c)}-\frac{c_{1}^{2}}{9(\Omega +c)})(\eta _{00}\eta ^{2}_{00,\xi })_{\xi }\\{} & {} +\{c(z^{2}(c+c_{1})+\frac{c_{1}}{9}-\frac{10cc_{1}}{9(\Omega +c)}-\frac{4c_{1}^{2}}{9(\Omega +c)})-(c+c_{1})(\frac{c}{6}-\frac{2c_{1}}{9}-\frac{c}{2}z^{2})\}(\eta ^{2}_{00}\eta _{00,\xi \xi })_{\xi }, \end{aligned}$$

and

$$\begin{aligned} H_{4,\xi }|_{z=1}= & {} 2c(\eta _{00}\eta _{21}+\eta _{10}\eta _{11}+\eta _{20}\eta _{01})_{\xi }-3(c+c_{1})(\eta ^{2}_{00}\eta _{11}+2\eta _{00}\eta _{10}\eta _{01})_{\xi }\\{} & {} -\frac{4(2c_{1}-3\Omega )}{3(\Omega +c)}(c+c_{1})(\eta ^{3}_{00}\eta _{01})_{\xi }-(\frac{c}{3}+\frac{2c_{1}}{9})(\eta _{00}\eta _{10,\xi \xi }+\eta _{10}\eta _{00,\xi \xi })_{\xi }\\{} & {} +(\frac{2c}{3}+\frac{7c_{1}}{9}-\frac{5cc_{1}}{9(\Omega +c)}-\frac{c_{1}^{2}}{9(\Omega +c)})(\eta _{00}\eta ^{2}_{00,\xi })_{\xi }\\{} & {} +(c+\frac{10c_{1}}{9}-\frac{10c c_{1}}{9(\Omega +c)}-\frac{4c_{1}^{2}}{9(\Omega +c)})(\eta ^{2}_{00}\eta _{00,\xi \xi })_{\xi }. \end{aligned}$$

Substituting (4.20) and (4.23) into (4.28), we get

$$\begin{aligned}{} & {} 2(\Omega +c)\eta _{21,\tau }+3c^{2}(\eta _{00}\eta _{21}+\eta _{10}\eta _{11}+\eta _{20}\eta _{01})_{\xi }-2(3c+2c_{1})(c+c_{1})(\eta ^{2}_{00}\eta _{11}+ 2\eta _{00}\eta _{10}\eta _{01})_{\xi } \nonumber \\{} & {} \quad +\frac{c^{3}}{3}\eta _{20,\xi \xi \xi }-(\frac{c^{2}}{6}+\frac{10 cc_{1}}{9}+\frac{2c_{1}^{2}}{9})(2\eta _{00,\xi }\eta _{10,\xi })_{\xi }-(\frac{c^{2}}{3}+\frac{20 cc_{1}}{9}+\frac{8c_{1}^{2}}{9})(\eta _{00,\xi \xi }\eta _{10}+\eta _{10,\xi \xi }\eta _{00})_{\xi } \nonumber \\{} & {} \quad -\frac{64 cc_{1}+24c_{1}^{2}+45c^{2}-15}{3(\Omega +c)}(c+c_{1})(\eta ^{3}_{00}\eta _{01})_{\xi }-B_{8}\eta ^{3}_{00,\xi }-B_{9}\eta ^{2}_{00}\eta _{00,\xi \xi \xi }-B_{10}\eta _{00}\eta _{00,\xi }\eta _{00,\xi \xi }=0,\nonumber \\ \end{aligned}$$
(4.29)

with

$$\begin{aligned} B_{8}= & {} \frac{2c(4c_{1}+3c-3\Omega )(c+c_{1})}{3(\Omega +c)}+\frac{4c_{1}(2c_{1}+3c)(c+c_{1})}{9(\Omega +c)}+\frac{c_{1}(2c+4c_{1})(5c+c_{1})}{9(\Omega +c)}\\{} & {} +\frac{5}{3}c^{2}+\frac{16}{9}c c_{1}-\frac{28}{9}c_{1}^{2}\\= & {} -\frac{c^{2}(7c^{8}+36c^{6}+34c^{4}-21c^{2}+1)}{3(c^{2}+1)^{4}},\\ B_{9}= & {} \frac{(2c_{1}+3c)(4c_{1}+3c-3\Omega )(c+c_{1})}{9(\Omega +c)}+\frac{8c_{1}(5c+2c_{1})(c+c_{1})}{9(\Omega +c)}+\frac{2}{3}c^{2}-\frac{11}{9}c c_{1}-\frac{26}{9}c_{1}^{2}\\= & {} -\frac{c^{2}(4c^{8}+9c^{6}+37c^{4}-21c^{2}+1)}{3(c^{2}+1)^{4}},\\ B_{10}= & {} \frac{2c(4c_{1}+3c-3\Omega )(c+c_{1})}{9(\Omega +c)}+\frac{8c_{1}(12c+5c_{1})(c+c_{1})}{9(\Omega +c)}+\frac{8c_{1}(5c+2c_{1})(c+2c_{1})}{9(\Omega +c)}\\{} & {} +\frac{14}{3}c^{2}-\frac{2}{9}c c_{1}-\frac{40}{3}c_{1}^{2}\\= & {} -\frac{2c^{2}(4c^{8}+8c^{6}+23c^{4}-10c^{2}-2)}{(c^{2}+1)^{4}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, X. & Liu, Y. A Highly Nonlinear Shallow-Water Model Arising from the Full Water Waves with the Coriolis Effect. J. Math. Fluid Mech. 25, 39 (2023). https://doi.org/10.1007/s00021-023-00785-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00785-9

Keywords

Mathematics Subject Classification

Navigation