Skip to main content
Log in

Wave Breaking for a Nonlinear Shallow Water Equation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we mainly study wave breaking for a nonlinear shallow water equation which describes the surface water waves of moderate amplitude in shallow water regime. We present a sufficient condition on the initial data to lead to wave breaking. Moreover, the estimate of life span is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Annales- Institut Fourier 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  3. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis. International Journal of Geometric Methods in Modern Physics 6(6), 419–450 (2011)

    Google Scholar 

  4. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  5. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Annali Della Scuola Normale Superiore Di Pis 26(2), 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233(1), 75–91 (2000)

    Article  MathSciNet  Google Scholar 

  7. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2007)

    Article  MathSciNet  Google Scholar 

  8. Fisher, M., Schiff, J.: The Camassa-Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259(5), 371–376 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bcklund transformations and hereditary symmetries. Physica D 4(1), 47–66 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gasull, A., Geyer, A.: Traveling surface waves of moderate amplitude in shallow water. Nonlinear Anal. Theory Methods Appl. 102(100), 105–119 (2014)

    Article  MathSciNet  Google Scholar 

  11. Geyer, A.: Solitary traveling water waves of moderate amplitude. Journal of Nonlinear Mathematical Physics 19(sup1), 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Geyer, A.: Symmetric waves are traveling waves for a shallow water equation modeling surface waves of moderate amplitude. Journal of Nonlinear Mathematical Physics 22(4), 545–551 (2015)

    Article  MathSciNet  Google Scholar 

  13. Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ma, F., Yue, L., Qu, C.: Wave-breaking phenomena for the nonlocal Whitham-type equations. J. Differential Equations 261(11), 6029–6054 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mi, Y., Mu, C.: On the solutions of a model equation for shallow water waves of moderate amplitude. J. Differential Equations 8(8), 2101–2129 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Mutluba, D.: On the Cauchy problem for a model equation for shallow water waves of moderate amplitude. Nonlinear Anal. Real World Appl. 14(5), 2022–2026 (2013)

    Article  MathSciNet  Google Scholar 

  17. Mutluba, D.: Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude. Nonlinear Anal. Theory Methods Appl. 97, 145–154 (2014)

    Article  MathSciNet  Google Scholar 

  18. Mutluba, D., Geyer, A.: Orbital stability of solitary waves of moderate amplitude in shallow water. J. Differential Equations 255(2), 254–263 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (2011)

    MATH  Google Scholar 

  20. Yang, S.: Wave breaking for a model equation for shallow water waves of moderate amplitude. Commun. Math. Sci. 19(7), 1799–1807 (2021)

    Article  MathSciNet  Google Scholar 

  21. Zhou, S.: The local well-posedness, existence and uniqueness of weak solutions for a model equation for shallow water waves of moderate amplitude. J. Differential Equations 258(12), 4103–4126 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhou, S., Mu, C.: Global conservative solutions for a model equation for shallow water waves of moderate amplitude. J. Differential Equations 256(5), 1793–1816 (2014)

    Article  MathSciNet  Google Scholar 

  23. Zhou, S., Qiao, Z., Mu, C., et al.: Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude. J. Differential Equations 263(2), 910–933 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Yunnan Fundamental Research Projects (Grant NO. 202101AU070029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yang, S. Wave Breaking for a Nonlinear Shallow Water Equation. J. Math. Fluid Mech. 24, 89 (2022). https://doi.org/10.1007/s00021-022-00724-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00724-0

Keywords

Mathematics Subject Classification

Navigation