Skip to main content
Log in

Maximum Principle for Some Optimal Control Problems Governed by 2D Nonlocal Cahn–Hillard–Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This work concerns some optimal control problems associated with the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The Cahn–Hilliard–Navier–Stokes model consists of a Navier–Stokes equation governing the fluid velocity field coupled with a convective Cahn–Hilliard equation for the relative concentration of one of the fluids. A distributed optimal control problem is formulated as the minimization of a cost functional subject to the controlled nonlocal Cahn–Hilliard–Navier–Stokes equations. We establish the first-order necessary conditions of optimality by proving the Pontryagin maximum principle for optimal control of such system via the seminal Ekeland variational principle. The optimal control is characterized using the adjoint variable. We also study an another optimal control problem of finding the unknown optimal initial data. Optimal data initialization problem is also known as the data assimilation problems in meteorology, where determining the correct initial condition is very crucial for the future predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theoret. Comput. Fluid Dyn. 1, 303–325 (1990)

    Article  ADS  Google Scholar 

  2. Agmon, S.: Lectures on Elliptic Boundary Value Problems. AMS Chelsea Publishing, Providence, RI (1965)

    MATH  Google Scholar 

  3. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Dover Publications, New York (1984)

    MATH  Google Scholar 

  4. Ball, J.M.: Strongly continuous semigroups, weak solutions, and variational constants formula. Proc. Am. Math. Soc. 63(2), 370–373 (1977)

    MATH  Google Scholar 

  5. Biswas, T., Dharmatti, S., Mohan, M.T.: Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hillard–Navier–Stokes equations. arXiv:1802.08413

  6. Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Colli, P., Frigeri, S., Grasselli, M.: Global existence of weak solutions to a nonlocal Cahn–Hilliard Navier–Stokes system. J. Math. Anal. Appl. 386(1), 428–444 (2012)

    Article  MathSciNet  Google Scholar 

  8. Colli, P., Sprekels, J.: Optimal boundary control of a nonstandard Cahn-Hilliard system with dynamic boundary condition and double obstacle inclusions. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds.) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol. 22, pp. 151–182. Springer, Cham (2017)

    Chapter  Google Scholar 

  9. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30, 2518–2546 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control Optim. 53(2), 696–721 (2015)

    MathSciNet  MATH  Google Scholar 

  11. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

    Book  Google Scholar 

  12. Doboszczak, S., Mohan, M.T., Sritharan, S.S.: Necessary conditions for distributed optimal control of linearized compressible Navier–Stokes equations, Submitted, arXiv:1910.11244

  13. Edmunds, D.E.: Optimal control of systems governed by partial differential equations. Bull. London Math. Soc. 4(2), 236–237 (1972)

    Article  ADS  Google Scholar 

  14. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  16. Fattorini, H.O., Sritharan, S.S.: Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. R. Soc. Lond. Ser. A 124, 211–251 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Fattorini, H.O.: Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  18. Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn–illiard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26(4), 847–893 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Frigeri, S., Grasselli, M., Krejci, P.: Strong solutions for two-dimensional nonlocal Cahn–Hilliard-Navier–Stokes systems. J. Differ. Equ. 255(9), 2587–2614 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn–Hilliard Navier–Stokes system in two dimension. SIAM J. Control Optim. 54(1), 221–250 (2015)

    Article  MathSciNet  Google Scholar 

  21. Frigeri, S., Grasselli, M., Sprekels, J.: Optimal distributed control of two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential. Appl. Math. Optim. (2018). https://doi.org/10.1007/s00245-018-9524-7

    Article  MATH  Google Scholar 

  22. Fursikov, A.V.: Optimal Control of Distributed Systems: Theory and Applications. American Mathematical Society, Rhode Island (2000)

    MATH  Google Scholar 

  23. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. SIAM’s Advances in Design and Control series, Philadelphia (2003)

  24. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  25. Lions, J.-L.: Quelques méthodes de résolution des problémes aux limites non linéaires. (French) Dunod Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  26. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  27. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  28. Mejdo, T.: hRobust control of a Cahn–Hilliard–Navier–Stokes model. Commun. Pure Appl. Anal. 15(6), 2075 (2016)

    Article  MathSciNet  Google Scholar 

  29. Medjo, T.: Optimal control of a Cahn–Hilliard–Navier–Stokes model with state constraints. J. Convex Anal 22, 1135–1172 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 3(13), 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  31. Simon, J.: Compact sets in the space \(\text{ L }^p(0, T;\text{ B })\). Annali di Matematica 146, 65–96 (1986)

    Article  Google Scholar 

  32. Sritharan, S.S.: Optimal control of viscous flow. SIAM Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia (1998)

  33. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  34. Wang, G.: Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint. Nonlinear Anal. 51, 509–536 (2002)

    Article  MathSciNet  Google Scholar 

  35. Wang, G., Wang, L.: Maximum principle of state-constrained optimal control governed by fluid dynamic systems. Nonlinear Anal. 52, 1911–1931 (2003)

    Article  MathSciNet  Google Scholar 

  36. Zhao, X., Liu, C.: Optimal control problem for viscous Cahn–Hilliard equation. Nonlinear Anal. Theory Methods Appl. 74(17), 6348–6357 (2011)

    Article  MathSciNet  Google Scholar 

  37. Zheng, J., Wang, Y.: Optimal control problem for Cahn-Hilliard equations with state constraint. J. Dyn. Control Syst. 21(2), 257–272 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Tania Biswas would like to thank the Indian Institute of Science Education and Research, Thiruvananthapuram, for providing financial support and stimulating environment for the research. The authors sincerely would like to thank the reviewer for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheetal Dharmatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Feireisl

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, T., Dharmatti, S. & Mohan, M.T. Maximum Principle for Some Optimal Control Problems Governed by 2D Nonlocal Cahn–Hillard–Navier–Stokes Equations. J. Math. Fluid Mech. 22, 34 (2020). https://doi.org/10.1007/s00021-020-00493-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00493-8

Keywords

Mathematics Subject Classification

Navigation