Skip to main content
Log in

Linear Inviscid Damping for Couette Flow in Stratified Fluid

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the inviscid damping of Couette flow with an exponentially stratified density. The optimal decay rates of the velocity field and the density are obtained for general perturbations with minimal regularity. For Boussinesq approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the decay rates for the full Euler equations of stratified fluids, which were not studied before. For both models, the decay rates depend on the Richardson number in a very similar way. Besides, we also study the dispersive decay due to the exponential stratification when there is no shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman, H.: Higher Transcendental Functions. McGraw-Hill Book Company, Inc., New York (1953)

    Google Scholar 

  2. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Booker, J.R., Bretherton, F.P.: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27, 517–539 (1967)

    Article  ADS  MATH  Google Scholar 

  4. Brown, S.N., Stewartson, K.: On the algebraic decay of disturbances in a stratified linear shear flow. J. Fluid Mech. 100, 811–816 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Case, K.M.: Stability of inviscid plane Couette flow. Phys. Fluids 3, 143–148 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Case, K.M.: Stability of an idealized atmosphere. I. Discussion of results. Phys. Fluids 3, 149–154 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chimonas, G.: Algebraic disturbances in stratified shear flows. J. Fluid Mech. 90, 1–19 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dikii, L.A.: Stability of plane-parallel flows of an inhomogeneous fluid. Prikladnoi Mathematik Mekh 24, 249–257 (1960). (Trans.: Appl. Math. Mech., 24, 357–369, 1960)

    MathSciNet  Google Scholar 

  9. Dikii, L.A.: The roots of the Whittaker functions and the Macdonald functions with a complex index. Izvestia Akademii Nauk SSSR Ser. Matem 24, 943–954 (1960)

    MathSciNet  Google Scholar 

  10. Dyson, F.J.: Stability of idealized atmosphere. II. Zeros of the confluent hypergeometric function. Phys. Fluids 3, 155–158 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Eliassen, A., Høiland, E., Riis, E.: Two-Dimensional Perturbation of a Flow with Constant Shear of a Stratified Fluid, Publ. No. 1, pp. 1-30. Institute for Weather, Climate Research, Oslo (1953)

  12. Elgindi, T.M., Widmayer, K.: Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid Boussinesq systems. SIAM J. Math. Anal. 47(6), 4672–4684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farrell, B.F., Ioannou, P.J.: Transient development of perturbations in stratified shear flow. J. Atmos. Sci. 50, 2201–2214 (1993)

    Article  ADS  Google Scholar 

  14. Hartman, R.J.: Wave propagation in a stratified shear flow. J. Fluid Mech. 71, 89–104 (1974)

    Article  ADS  MATH  Google Scholar 

  15. Høiland, E.: On the dynamic effect of variation in density on two-dimensional perturpation of floaw with constnat shear. Grof. Publ. XVIII, 3–12 (1953)

    Google Scholar 

  16. Kuo, H.L.: Perturbations of plane Couette flow in stratified fluid and origin of cloud streets. Phys. Fluids 6, 195–211 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lin, Z., Zeng, C.: Inviscid dynamic structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Orr, W.M.F.: Stability and instability of steady motions of a perfect liquid. Proc. Ir. Acad. Sect. A Math Astron. Phys. Sci. 27, 9–66 (1907)

    Google Scholar 

  19. Phillips, O.M.: The Dynamics of the Upper Ocean, 1st edn. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  20. Souganidis, P.E., Strauss, W.A.: Instability of a class of dispersive solitary waves. Proc. R. Soc. Edinb. 114A, 195–212 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taylor, G.I.: Effect of variation in density on the stability of superposed streams of fluid. Proc. R. Soc. Lond. A132, 499–523 (1931)

    Article  ADS  MATH  Google Scholar 

  22. Wei, D., Zhang, Z., Zhao, W.: Linear Inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure. Appl. Math. (2016). doi:10.1002/cpa.21672

  23. Yaglom, A.M.: Hydrodynamic Instability and Transition to Turbulence. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  24. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221(3), 1449–1509 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lin.

Additional information

Communicated by R. Shvydkoy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lin, Z. Linear Inviscid Damping for Couette Flow in Stratified Fluid. J. Math. Fluid Mech. 20, 445–472 (2018). https://doi.org/10.1007/s00021-017-0328-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0328-3

Navigation