Skip to main content
Log in

Translation-invariant Operators in Reproducing Kernel Hilbert Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let G be a locally compact abelian group with a Haar measure, and Y be a measure space. Suppose that H is a reproducing kernel Hilbert space of functions on \(G\times Y\), such that H is naturally embedded into \(L^2(G\times Y)\) and is invariant under the translations associated with the elements of G. Under some additional technical assumptions, we study the W*-algebra \({\mathcal {V}}\) of translation-invariant bounded linear operators acting on H. First, we decompose \({\mathcal {V}}\) into the direct integral of the W*-algebras of bounded operators acting on the reproducing kernel Hilbert spaces \({\widehat{H}}_\xi \), \(\xi \in {\widehat{G}}\), generated by the Fourier transform of the reproducing kernel. Second, we give a constructive criterion for the commutativity of \({\mathcal {V}}\). Third, in the commutative case, we construct a unitary operator that simultaneously diagonalizes all operators belonging to \({\mathcal {V}}\), i.e., converts them into some multiplication operators. Our scheme generalizes many examples previously studied by Nikolai Vasilevski and other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availibility

Not applicable.

References

  1. Agler, J., McCarthy, J.E.: Pick Interpolation and Hilbert Function Spaces. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950). https://doi.org/10.2307/1990404

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrera-Castelán, R.M., Maximenko, E.A., Ramos-Vazquez, G.: Radial operators on polyanalytic weighted Bergman spaces. Bol. Soc. Mat. Mex. 27, 43 (2021). https://doi.org/10.1007/s40590-021-00348-w

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, W., Fulsche, R.: Berger-Coburn theorem, localized operators, and the Toeplitz algebra. In: Bauer, W., Duduchava, R., Grudsky, S., Kaashoek, M. (eds.) In: Operator Algebras, Toeplitz Operators and Related Topics. Operator Theory: Advances and Applications, vol. 279. Birkhäuser, Cham (2020). https://doi.org/10.1007/978-3-030-44651-2_8

    Chapter  MATH  Google Scholar 

  5. Dawson, M., Ólafsson, G., Quiroga-Barranco, R.: Commuting Toeplitz operators on bounded symmetric domains and multiplicity-free restrictions of holomorphic discrete series. J. Funct. Anal. 268, 1711–1732 (2015). https://doi.org/10.1016/j.jfa.2014.12.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Dawson, M., Ólafsson, G., Quiroga-Barranco, R.: The restriction principle and commuting families of Toeplitz operators on the unit ball. São Paulo J. Math. Sci. 12, 196–226 (2018). https://doi.org/10.1007/s40863-018-0104-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Dixmier, J.: Von Neumann Algebras. North-Holland Publishing Company, Amsterdam (1981)

    MATH  Google Scholar 

  8. Engliš, M.: Density of algebras generated by Toeplitz operator on Bergman spaces. Ark. Mat. 30, 227–243 (1992). https://doi.org/10.1007/BF02384872

    Article  MathSciNet  MATH  Google Scholar 

  9. Esmeral, K., Maximenko, E.A., Vasilevski, N.: C*-algebra generated by angular Toeplitz operators on the weighted Bergman spaces over the upper half-plane. Integr. Equ. Oper. Theory 83, 413–428 (2015). https://doi.org/10.1007/s00020-015-2243-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Folland, G.B.: A Course in Abstract Harmonic Analysis, 2nd edn. Taylor & Francis, Boca Raton (2016)

    Book  Google Scholar 

  11. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  12. Grudsky, S., Karapetyants, A., Vasilevski, N.: Dynamics of properties of Toeplitz operators on the upper half-plane: Parabolic case. J. Operator Theory 52, 185–214 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Grudsky, S., Karapetyants, A., Vasilevski, N.: Dynamics of properties of Toeplitz operators on the upper half-plane: Hyperbolic case. Bol. Soc. Mat. Mexicana 10(1), 119–138 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Grudsky, S., Karapetyants, A., Vasilevski, N.: Dynamics of properties of Toeplitz operators with radial symbols. Integr. Equ. Oper. Theory 50, 217–253 (2004). https://doi.org/10.1007/s00020-003-1295-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Grudsky, S., Quiroga-Barranco, R., Vasilevski, N.: Commutative C*-algebras of Toeplitz operators and quantization on the unit disk. J. Funct. Anal. 234, 1–44 (2006). https://doi.org/10.1016/j.jfa.2005.11.015

  16. Grudsky, S.M., Maximenko, E.A., Vasilevski, N.L.: Radial Toeplitz operators on the unit ball and slowly oscillating sequences. Commun. Math. Anal. 14, 77–94 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Hagger, R.: Essential commutants and characterizations of the Toeplitz algebra. J. Operator Theory 86, 125–143 (2021) https://doi.org/10.7900/jot.2020feb06.2268

  18. Herrera Yañez, C., Maximenko, E.A., Vasilevski, N.: Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions. Integr. Equ. Oper. Theory 77, 149–166 (2013). https://doi.org/10.1007/s00020-013-2081-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Herrera Yañez, C., Hutník, O., Maximenko, E.A.: Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions. Comptes Rendus Mathematique 352, 129–132 (2014). https://doi.org/10.1016/j.crma.2013.12.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis I, 2nd edn. Springer, New York (1979)

    Book  Google Scholar 

  21. Hutník, O.: Wavelets from Laguerre polynomials and Toeplitz-type operators. Integr. Equ. Oper. Theory 71, 357–388 (2011). https://doi.org/10.1007/s00020-011-1907-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Hutník, O., Hutníková, M.: On Toeplitz localization operators. Arch. Math. 97, 333–344 (2011). https://doi.org/10.1007/s00013-011-0307-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Hutníková, M., Miśková, A.: Continuous Stockwell transform: Coherent states and localization operators. J. Math. Phys. 56, 073504 (2015). https://doi.org/10.1063/1.4926950

    Article  MathSciNet  MATH  Google Scholar 

  24. Hutník, O., Maximenko, E., Mišková, A.: Toeplitz localization operators: spectral functions density. Complex Anal. Oper. Theory 10, 1757–1774 (2016). https://doi.org/10.1007/s11785-016-0564-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Larsen, R.: An Introduction to the Theory of Multipliers. Springer, Berlin (1971). https://doi.org/10.1007/978-3-642-65030-7

    Book  MATH  Google Scholar 

  26. Leal-Pacheco, C.R., Maximenko, E.A., Ramos-Vazquez, G.: Homogeneously polyanalytic kernels on the unit ball and the Siegel domain. Complex Anal. Oper. Theory 15, 99 (2021). https://doi.org/10.1007/s11785-021-01145-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Loaiza, M., Lozano, C.: On C*-algebras of Toeplitz operators on the harmonic Bergman space. Integr. Equ. Oper. Theory 76, 105–130 (2013). https://doi.org/10.1007/s00020-013-2046-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Maximenko, E.A., Tellería-Romero, A.M.: Radial operators in polyanalytic Bargmann–Segal–Fock spaces. In: Bauer, W., Duduchava, R., Grudsky, S., Kaashoek, M. (eds.) In: Operator Algebras, Toeplitz Operators and Related Topics. Book series Operator Theory: Advances and Applications, vol. 279, pp. 277–305. Birkhäuser, Cham (2020). https://doi.org/10.1007/978-3-030-44651-2_18

    Chapter  MATH  Google Scholar 

  29. Pessoa, L.V.: The method of variation of the domain for poly-Bergman spaces. Math. Nachr. 286, 1850–1862 (2013). https://doi.org/10.1002/mana.201010057

  30. Quiroga-Barranco, R., Sánchez-Nungaray, A.: Moment maps of Abelian groups and commuting Toeplitz operators acting on the unit ball. J. Funct. Anal. 281, 109039 (2021). https://doi.org/10.1016/j.jfa.2021.109039

    Article  MathSciNet  MATH  Google Scholar 

  31. Ramírez Ortega, J., Sánchez-Nungaray, A.: Toeplitz operators with vertical symbols acting on the poly-Bergman spaces of the upper half-plane. Complex Anal. Oper. Theory 9, 1801–1817 (2015). https://doi.org/10.1007/s11785-015-0469-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Sakai, S.: C*-Algebras and W*-algebras. Springer, Berlin (1971)

    MATH  Google Scholar 

  33. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635–4643 (2006). https://doi.org/10.1109/TIT.2006.881713

    Article  MathSciNet  MATH  Google Scholar 

  34. Suárez, D.: The eigenvalues of limits of radial Toeplitz operators. Bull. Lond. Math. Soc. 40, 631–641 (2008). https://doi.org/10.1112/blms/bdn042

    Article  MathSciNet  MATH  Google Scholar 

  35. Takesaki, M.: Theory of Operator Algebras I. Springer, (2nd printing of the 1st edition) (2002)

  36. Vasilevski, N.L.: On Bergman-Toeplitz operators with commutative symbol algebras. Integr. Equ. Oper. Theory 34, 107–126 (1999). https://doi.org/10.1007/BF01332495

    Article  MathSciNet  MATH  Google Scholar 

  37. Vasilevski, N.L.: Commutative Algebras of Toeplitz Operators on the Bergman Space. Birkhäuser, Basel (2008). https://doi.org/10.1007/978-3-7643-8726-6

    Book  MATH  Google Scholar 

  38. Xia, J.: Localization and the Toeplitz algebra on the Bergman space. J. Funct. Anal. 269, 781–814 (2015). https://doi.org/10.1016/j.jfa.2015.04.011

Download references

Acknowledgements

The authors are grateful to Nikolai L. Vasilevski who introduced to us the world of commutative C*-algebras of translation-invariant Toeplitz operators acting in various reproducing kernel Hilbert spaces, to the anonymous referee for many corrections, to Christian Rene Leal Pacheco for the joint revision of various parts of this paper, to Matthew G. Dawson for explaining us some ideas from Sect. 4, to Yuri Latushkin for the advice to use tensor products in Sect. 4, and to Gestur Ólafsson for indicating us that the embedding \(C_b(X)\subseteq L^\infty (X,\mu )\) in Sect. 2 required the assumption .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor A. Maximenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors have been partially supported by Proyecto CONACYT “Ciencia de Frontera” FORDECYT-PRONACES/61517/2020, by CONACYT (Mexico) scholarships, and by IPN-SIP projects (Instituto Politécnico Nacional, Mexico)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Yañez, C., Maximenko, E.A. & Ramos-Vazquez, G. Translation-invariant Operators in Reproducing Kernel Hilbert Spaces. Integr. Equ. Oper. Theory 94, 31 (2022). https://doi.org/10.1007/s00020-022-02705-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-022-02705-4

Keywords

Mathematics Subject Classification

Navigation