Skip to main content
Log in

Maximal Operator with Rough Kernel in Variable Musielak–Morrey–Orlicz type Spaces, Variable Herz Spaces and Grand Variable Lebesgue Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In the frameworks of some non-standard function spaces (viz. Musielak–Orlicz spaces, generalized Orlicz–Morrey spaces, generalized variable Morrey spaces and variable Herz spaces) we prove the boundedness of the maximal operator with rough kernel. The results are new even for p constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Qassem, H., Al-Salman, A.: \(l^p\)-boundedness of a class of singular integral operators with rough kernels. Turk. J. Math. 25, 519–533 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Al-Qassem, H., Cheng, L., Pan, Y.: On certain rough integral operators and extrapolation. J. Ineq. Pure Appl. Math. 10, 15 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Al-Salman, A.: Rough oscillatory singular integral operators-II. Turk. J. Math. 27, 565–579 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Al-Salman, A.: Maximal operators with rough kernels on product domains. J. Math. Anal. Appl. 311(1), 338–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Al-Salman, A.: On a class of singular integral operators with rough kernels. Can. Math. Bull. 4(1), 3–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balakishiyev, A.S., Guliyev, V.S., Gurbuz, F., Serbetci, A.: Sublinear operators with rough kernel generated by Calderón–Zygmund operators and their commutators on generalized local Morrey spaces. J. Inequal. Appl. 2015, 18 (2015)

    Article  MATH  Google Scholar 

  7. Chanillo, S., Watson, D., Wheeden, R.: Some integral and maximal operators related to starlike sets. Studia Math. 107(3), 223–255 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, L.-K., Lin, H.: A maximal operator related to a class of singular integrals. Ill. J. Math. 34(1), 296–321 (1990)

    MathSciNet  Google Scholar 

  9. Ding, Y.: Weak type bounds for a class of rough operators with power weights. Proc. Am. Math. Soc. 125(10), 2939–2942 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, Y., Lin, C.-C.: A class of maximal operators with rough kernel on product spaces. Ill. J. Math. 45(2), 545–557 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Ding, Y., Lu, S.: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 50(1), 29–39 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals. Proc. Am. Math. Soc. 336(2), 869–880 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, G., Lu, S., Yang, D.: Boundedness of rough singular integral operators on homogeneous Herz spaces. J. Austral. Math. Soc. (Series A) 66(2), 201–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 261–274 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sjögren, P., Soria, F.: Rough maximal functions and rough singular integral operators applied to integrable radial functions. Rev. Mat. Iberoam. 13(1), 691–701 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey–Herz spaces. Hokkaido Math. J. 34(2), 299–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Balakishiyev, A.S., Guliyev, V.S., Gurbuz, F., Serbetci, A.: Sublinear operators with rough kernel generated by Calderón–Zygmund operators and their commutators on generalized local Morrey spaces. J. Inequal. Appl. 2015, 61 (2015)

    Article  MATH  Google Scholar 

  18. Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)

    Article  MATH  Google Scholar 

  19. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris 334(9), 817–822 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  22. Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aboulaich, R., Boujena, S., El Guarmah, E.: Sur un modèle non-linéaire pour le débruitage de l’image. C. R. Math. Acad. Sci. Paris 345(8), 425–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Blomgren, P., Chan, T., Mulet, P., Vese, L., Wan, W.: Variational PDE models and methods for image processing. In: Numerical analysis 1999. In: Proceedings of the 18th Dundee biennial conference, Univ. of Dundee, GB, June 29th–July 2nd, 1999, Boca Raton, FL: Chapman & Hall/ CRC, 2000, pp. 43–67

  26. Bollt, E.M., Chartrand, R., Esedo\(\bar{\rm g}\)lu, S., Schultz, P., Vixie, K.R.: Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion. Adv. Comput. Math. 31(1–3), 61–85 (2009)

  27. Chen, Y., Guo, W., Zeng, Q., Liu, Y.: A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images. Inverse Probl. Imaging 2(2), 205–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wunderli, T.: On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions. J. Math. Anal. Appl. 364(2), 591–598 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Harjulehto, P., Hästö, P., Lê, U.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 72(12), 4551–4574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. Praha 51(4), 355–425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cruz-Uribe, D .V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Birkhäuser/Springer, New York (2013)

    Book  MATH  Google Scholar 

  33. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  34. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1: Variable Exponent Lebesgue and Amalgam Spaces, Vol. 248 of Operator Theory: Advances and Applications, Birkhäuser Basel, (2016)

  35. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Vol. 249 of Operator Theory: Advances and Applications, (2016)

  36. Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Rafeiro, H., Samko, S.: On maximal and potential operators with rough kernels in variable exponent spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27(3), 309–325 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  39. Berberian, S. K.: Lectures in functional analysis and operator theory. Springer, New York-Heidelberg, (1974), graduate Texts in Mathematics, No. 15

  40. Kolmogoroff, A.: Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Stud. Math. 5, 29–33 (1934)

    Article  MATH  Google Scholar 

  41. Hästö, P.A.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269(12), 4038–4048 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hästö, P.A.: Corrigendum to The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 271(1), 240–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Guliyev, V.S., Hasanov, J.J., Samko, S.G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107(2), 285–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Karapetyants, N.K., Samko, N.: Weighted theorems on fractional integrals in the generalized Hölder spaces via indices \(m_\omega \) and \(M_\omega \). Fract. Calc. Appl. Anal. 7(4), 437–458 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Deringoz, F., Guliyev, V. S., Samko, S.: Boundedness of the maximal and singular operators on generalized Orlicz–Morrey spaces. In: Operator theory, operator algebras and applications. Selected papers based on the presentations at the workshop WOAT 2012, Lisbon, Portugal, September 11–14, 2012, Basel: Birkhäuser/Springer, 2014, pp. 139–158

  46. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces. Bull. Sci. Math. 137(1), 76–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Guliyev, V., Hasanov, J.J., Samko, S.G.: Maximal, potential and singular operators in the local complementary variable exponent Morrey type spaces. J. Math. Anal. Appl. 401(1), 72–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Samko, S.: Variable exponent Herz spaces. Mediterr. J. Math. 10(4), 2007–2025 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rafeiro, H., Samko, S.: Riesz potential operator in continual variable exponents Herz spaces. Math. Nachr. 288(4), 465–475 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Rafeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafeiro, H., Samko, S. Maximal Operator with Rough Kernel in Variable Musielak–Morrey–Orlicz type Spaces, Variable Herz Spaces and Grand Variable Lebesgue Spaces. Integr. Equ. Oper. Theory 89, 111–124 (2017). https://doi.org/10.1007/s00020-017-2398-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2398-2

Mathematics Subject Classification

Keywords

Navigation