Skip to main content
Log in

Convex Entire Noncommutative Functions are Polynomials of Degree Two or Less

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

This paper concerns matrix “convex” functions of (free) noncommuting variables, \({x = (x_1, \ldots, x_g)}\). It was shown in Helton and McCullough (SIAM J Matrix Anal Appl 25(4):1124–1139, 2004) that a polynomial in \({x}\) which is matrix convex is of degree two or less. We prove a more general result: that a function of \({x}\) that is matrix convex near \({0}\) and also that is “analytic” in some neighborhood of the set of all self-adjoint matrix tuples is in fact a polynomial of degree two or less. More generally, we prove that a function \({F}\) in two classes of noncommuting variables, \({a = (a_1, \ldots, a_{\tilde{g}})}\) and \({x = (x_1, \ldots, x_g)}\) that is both“analytic” and matrix convex in \({x}\) on a “noncommutative open set” in \({a}\) is a polynomial of degree two or less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aujla J.S.: A simple proof of the Lieb concavity theorem. J. Math. Phys. 52(4), 043505 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhatia R.: Matrix Analysis. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  3. Balasubramanian, S., McCullough, S.: Quasi-convex free polynomials. Proc. Am. Math. Soc. 142(8), 2581–2591 (2014)

  4. Donoghue W.F.: Monotone matrix functions and analytic continuation. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  5. Effros E.G.: A matrix convexity approach to some celebrated quantum inequalities. Proc. Natl. Acad. Sci. 106, 1006–1008 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebadian A., Nikoufar I., Eshaghi Gordji M.: Perspectives of matrix convex functions. Proc. Natl. Acad. Sci. 108(18), 7313–7314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hay D., Helton J.W., Lim A., McCullough S.: Noncommutative partial matrix convexity. Indiana Univ. Math. J. 57(6), 2815–2842 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helton J.W., Klep I., McCullough S.: Proper free analytic maps. J. Funct. Anal. 260(5), 1476–1490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helton J.W., McCullough S.: Convex noncommutative polynomials have degree two or less. SIAM J. Matrix Anal. Appl. 25(4), 1124–1139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Helton J.W., McCullough S.: Every convex free basic semi-algebraic set has an LMI representation. Ann. Math. 176(2), 979–1013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Helton J.W., McCullough S.A., Putinar M., Vinnikov V.: Convex matrix inequalities versus linear matrix inequalities. IEEE Trans. Autom. Control 54, 952–964 (2009)

  12. Helton J.W., McCullough S., Vinnikov V.: Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240(1), 105–191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kraus F.: Über konvexe Matrixfunktionen. Math. Z. 41, 18–42 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov V.: Foundations of noncommutative function theory. In: Mathematical Surveys and Monographs, vol. 199. American Mathematical Society, Providence (2012)

  15. Nikoufar I., Ebadian A., Eshaghi Gordji M.: The simplest proof of the Lieb concavity theorem. Adv. Math. 248, 531–533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rowen, L.H.: Polynomials identities in ring theory. Academic Press, London (1980)

  17. Taylor J.L.: Functions of several noncommuting variables. Bull. Am. Math. Soc. 79, 1–34 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Voiculescu D.-V.: Free analysis questions. I: duality transform for the coalgebra of \({\partial_{X:B}}\). Int. Math. Res. Not. 16, 793–822 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Voiculescu D.-V.: Free analysis questions. II: the Grassmannian completion and the series expansions at the origin. J. Reine Angew. Math. 645, 155–236 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William Helton.

Additional information

J. W. Helton: Partially supported by NSF grant DMS-1201498 and the Ford Motor Co.

J. E. Pascoe: Partially supported by NSF grant DMS-1361720.

V. Vinnikov: Partially supported by the Israel Science Foundation (Grant No. 322/00).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helton, J.W., Pascoe, J.E., Tully-Doyle, R. et al. Convex Entire Noncommutative Functions are Polynomials of Degree Two or Less. Integr. Equ. Oper. Theory 86, 151–163 (2016). https://doi.org/10.1007/s00020-016-2317-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2317-y

Navigation