Skip to main content
Log in

C*-Convex Sets and Completely Positive Maps

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We prove a geometric version of an operator valued Hahn–Banach theorem and use it to study sets K that are A-convex over a unital C*-algebra A in the sense that \({\sum_{j=1}^{n} a_{j}^{*}y_{j}a_{j}\in K}\) whenever \({y_{j}\in K}\) and \({a_{j}\in A}\) with \({\sum_{j=1}^{n}a_{j}^{*}a_{j}=1}\). We show how weak* compact such sets can be realized as concrete sets of unital completely positive maps. An application to C*-extreme points is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson W.B.: Subalgebras of C*-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arveson W.B.: The noncommutative Choquet boundary. J. Am. Math. Soc. 21, 1065–1084 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanchard E.: Tensor products of C(X)-algebras over C(X), recent advances in operator algebras (Orléans, 1992). Astérisque 232, 81–92 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Blecher, D.P., Le Merdy, C.: Operator Algebras and Their Modules. L.M.S. Monographs, New Series, vol. 30. Clarendon Press, Oxford (2004)

  5. Davidson, K.: C*-Algebras by Example. Fields Institute Monographs, vol. 6. Amer. Math. Soc., Providence (1996)

  6. Davidson K.R., Kennedy M.: The Choquet boundary of an operator system. Duke Math. J. 164, 2989–3004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dritchel M., McCullough S.: Boundary representations for families of representations of operator algebras and spaces. J. Oper. Theory 53, 159–167 (2005)

    MathSciNet  Google Scholar 

  8. Effros, E.G., Ruan, Z-J.: Operator Spaces. London Mathematical Society Monographs. New Series, vol. 23. Oxford University Press, New York (2000)

  9. Effros, G., Webster, C.: Operator analogues of locally convex spaces. In: Operator Algebras and Applications (Samos, 1996), pp. 163–207, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht (1997)

  10. Effros G., Winkler S.: Matrix convexity: operator analogues of the bipolar and Hahn–Banach theorems. J. Funct. Anal. 144, 117–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elliott G.A.: On approximately finite-dimensional von Neumann algebras, II. Can. Math. Bull. 21, 415–418 (1979)

    Article  MathSciNet  Google Scholar 

  12. Farenick D.R.: Pure matrix states on operator systems. Linear Algebra Appl. 393, 149–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farenick D.R., Morenz P.B.: C*-extreme points in the generalised state spaces of a C*-algebra. Trans. Am. Math. Soc. 349, 1725–1748 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glimm J.: A Stone–Weierstrass theorem for C*-algebras. Ann. Math. 72, 216–244 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halpern H.: Module homomorphisms of a von Neumann algebra into its center. Trans. Am. Math. Soc. 140, 183–193 (1969)

    Article  MathSciNet  Google Scholar 

  16. Helton J.W., McCullough S.: Every convex free basic semi-algebraic set has an LMI representation. Ann. Math. 176, 979–1013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hopenwasser A., Moore R.L., Paulsen V.I.: C*-extreme points. Trans. Am. Math. Soc. 266, 291–307 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, Vols. 1, 2. Academic Press, London (1983/1986)

  19. Kleski C.: Boundary representations and pure completely positive maps. J. Oper. Theory 71, 45–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loebl R.I., Paulsen V.I.: Some remarks on C*-convexity. Linear Algebra Appl. 35, 63–78 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Magajna B.: The Haagerup norm on the tensor product of operator modules. J. Funct. Anal. 129, 325–348 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Magajna B.: Tensor products over abelian W*-algebras. Trans. Am. Math. Soc. 348, 2427–2440 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Magajna B.: Strong operator modules and the Haagerup tensor product. Proc. Lond. Math. Soc. 74, 201–240 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Magajna B.: A topology for operator modules over W*-algebras. J. Funct. Anal. 154, 17–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Magajna B.: The minimal operator module of a Banach module. Proc. Edinb. Math. Soc. 42, 191–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Magajna B.: C*-convex sets and completely bounded bimodule homomorphisms. Proc. R. Soc. Edinb. Sect. A. 130, 375–387 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Magajna B.: C*-convexity and the numerical range. Can. Math. Bull. 43, 193–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Magajna B.: On C*-extreme points. Proc. Am. Math. Soc. 129, 771–780 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Magajna B.: On completely bounded bimodule maps over W*-algebras. Stud. Math. 154, 137–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Morenz P.B.: The structure of C*-convex sets. Can. J. Math. 46, 1007–1026 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Paulsen, V.I.: Completely bounded maps and operator algebras. In: Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

  32. Pisier, G.: Introduction to Operator Space Theory. London Mathematical Society Lecture Note Series, vol. 294. Cambridge University Press, Cambridge (2003)

  33. Rudin W.: Well distributed measurable sets. Am. Math. Mon. 90, 41–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stormer, E.: Positive Linear Maps of Operator Algebras. Springer Monographs in Mathematics. Springer, Berlin (2013)

  35. Takesaki, M.: Theory of Operator Algebras. Vols I, II, and III, Encyclopaedia of Math. Sciences 124, 125 and 127. Springer, Berlin (2002/2003)

  36. Webster C., Winkler S.: The Krein–Milman theorem in operator convexity. Trans. Am. Math. Soc. 351, 307–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wittstock G.: Ein operatorwertiger Hahn–Banach Satz. J. Funct. Anal. 40, 127–150 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Magajna.

Additional information

The author was supported in part by the Ministry of Science and Education of Slovenia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magajna, B. C*-Convex Sets and Completely Positive Maps. Integr. Equ. Oper. Theory 85, 37–62 (2016). https://doi.org/10.1007/s00020-016-2291-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2291-4

Mathematics Subject Classification

Keywords

Navigation