Skip to main content
Log in

The State Space Isomorphism Theorem for Discrete-Time Infinite-Dimensional Systems

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

It is well-known that the state space isomorphism theorem fails in infinite-dimensional Hilbert spaces: there exist minimal discrete-time systems (with Hilbert space state spaces) which have the same impulse response, but which are not isomorphic. We consider discrete-time systems on locally convex topological vector spaces which are Hausdorff and barrelled and show that in this setting the state space isomorphism theorem does hold. In contrast to earlier work on topological vector spaces, we consider a definition of minimality based on dilations and show how this necessitates certain definitions of controllability and observability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas, A.C., Matsūo, T., Yamamoto, Y.: Linear deterministic realization theory. In: Mathematical System Theory. Springer, Berlin, pp. 191–212 (1991)

  2. Arov D.Z., Kaashoek M.A., Pik D.R.: The Kalman–Yakubovich–Popov inequality for discrete time systems of infinite dimension. J. Oper. Theory 55(2), 393–438 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Arov D.Z., Nudel’man M.A.: A criterion for the unitary similarity of minimal passive systems of scattering with a given transfer function. Ukraïn. Mat. Zh. 52(2), 147–156 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Arov D.Z., Nudel’man M.A.: Conditions for the similarity of all minimal passive realizations of a given transfer function (scattering and resistance matrices). Mat. Sb. 193(6), 3–24 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bourbaki, N.: Topological vector spaces, chapters 1–5. In: Elements of Mathematics (Berlin). Springer, Berlin (1987). (Translated from the French by H.G. Eggleston and S. Madan (1987))

  6. Fuhrmann, P.A.: On realization of linear systems and applications to some questions of stability. Math. Syst. Theory 8(2), 132–141 (1974/75)

  7. Grothendieck, A.: Topological vector spaces. Gordon and Breach Science Publishers, New York (1973). (Translated from the French by Orlando Chaljub, Notes on Mathematics and its Applications)

  8. Hegner S.J.: Linear decomposable systems in continuous time. SIAM J. Math. Anal. 12(2), 243–273 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Husain T.: S-spaces and the open mapping theorem. Pac. J. Math. 12, 253–271 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kalman R.E., Falb P.L., Arbib M.A.: Topics in Mathematical System Theory. McGraw-Hill Book Co., New York (1969)

    MATH  Google Scholar 

  11. Köthe, G.: Topological Vector Spaces. I. Springer, New York (1969). (Translated from the German by D.J.H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159)

  12. Köthe G.: Topological Vector Spaces. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 237. Springer, New York (1979)

    Google Scholar 

  13. Matsūo, T.: Realization Theory of Continuous-Time Dynamical Systems. Lecture Notes in Control and Information Sciences, vol. 32. Springer, Berlin (1981)

  14. Robertson, A.P., Robertson, W.J.: Topological Vector Spaces. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 53. Cambridge University Press, New York (1964)

  15. Rudin, W.: Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1973)

  16. Schaefer, H.H.: Topological Vector Spaces. The Macmillan Co./Collier-Macmillan Ltd., New York/London (1966)

  17. Trèves F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  18. Wilansky A.: Modern Methods in Topological Vector Spaces. McGraw-Hill International Book Co., New York (1978)

    MATH  Google Scholar 

  19. Yamamoto Y.: Some remarks on reachability of infinite-dimensional linear systems. J. Math. Anal. Appl. 74(2), 568–577 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yamamoto, Y.: Realization theory of infinite-dimensional linear systems. I. Math. Syst. Theory 15(1): 55–77 (1981/82)

  21. Zhou K., Doyle John C., Glover K.: Robust and Optimal Control. Prentice-Hall, Inc., Upper Saddle River (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Opmeer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakhchoukh, A.N., Opmeer, M.R. The State Space Isomorphism Theorem for Discrete-Time Infinite-Dimensional Systems. Integr. Equ. Oper. Theory 84, 105–120 (2016). https://doi.org/10.1007/s00020-015-2251-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-015-2251-4

Mathematics Subject Classification

Keywords

Navigation