Skip to main content
Log in

k-Extreme Points in Symmetric Spaces of Measurable Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arazy J.: On the geometry of the unit ball of unitary matrix spaces. Integral Equ. Oper. Theory 4(2), 151–171 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandyopadhyay P., Fonf V.P., Lin B.L., Martín M.: Structure of nested sequences of balls in Banach spaces. Houst. J. Math. 29(1), 173–193 (2003)

    MATH  Google Scholar 

  3. Bennett C., Sharpley R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston (1988)

    Google Scholar 

  4. Chen, S.: Geometry of Orlicz spaces. Diss. Math. (Rozprawy Mat.) 356 (1996)

  5. Chilin V.I., Dodds P.G., Sukochev F.A.: The Kadets–Klee property in symmetric spaces of measurable operators. Isr. J. Math. 97, 203–219 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chilin V.I., Krygin A.V., Sukochev F.A.: Extreme points of convex fully symmetric sets of measurable operators. Integral Equ. Oper. Theory 15(2), 186–226 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chilin V.I., Krygin A.V., Sukochev F.A.: Local uniform and uniform convexity of noncommutative symmetric spaces of measurable operators. Math. Proc. Camb. Philos. Soc. 111(2), 355–368 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Czerwińska, M.M.: Geometric properties of symmetric spaces of measurable operators, (Order No. 3476359, The University of Memphis). ProQuest Dissertations and Theses, vol. 131. http://search.proquest.com/docview/893659843 (2011)

  9. Czerwińska M.M., Kamińska A.: Complex rotundity properties and midpoint local uniform rotundity in symmetric spaces of measurable operators. Stud. Math. 201(3), 253–285 (2010)

    Article  MATH  Google Scholar 

  10. Czerwińska M.M., Kamińska A., Kubiak D.: Smooth and strongly smooth points in symmetric spaces of measurable operators. Positivity 16(1), 29–51 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dodds P.G., Dodds T.K., De Pagter B.: Noncommutative Banach function spaces. Math. Z. 201(4), 583–597 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dodds P.G., Dodds T.K., De Pagter B.: Noncommutative Köthe duality. Trans. Am. Math. Soc. 339(2), 717–750 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Dodds, P.G., De Pagter, B., Sukochev, F.A.: Theory of Noncommutative Integration (unpublished monograph; to appear)

  14. Fack T., Kosaki H.: Generalized s-numbers of τ-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Graduate Studies in Mathematics, vol. 15. American Mathematical Society, Providence (1997)

    Book  Google Scholar 

  16. Kalton N.J., Sukochev F.A.: Symmetric norms and spaces of operators. J. Reine Angew. Math. 621, 81–121 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Kamińska A., Parrish A.: Note on extreme points in Marcinkiewicz function spaces. Banach J. Math. Anal. 4(1), 1–12 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kreĭn S.G., Petunīn Y.Ī., Semënov E.M.: Interpolation of Linear Operators. Translations of Mathematical Monographs, vol. 54. American Mathematical Society, Providence (1982)

    Google Scholar 

  19. de Pagter, B.: Non-commutative Banach function spaces. In: Positivity. Trends in Mathematics, pp. 197–227. Birkhäuser, Basel (2007)

  20. Raynaud Y., Xu Q.: On subspaces of non-commutative L p -spaces. J. Funct. Anal. 203(1), 149–196 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ryff J.V.: Extreme points of some convex subsets of L 1(0, 1). Proc. Am. Math. Soc. 18, 1026–1034 (1967)

    MATH  MathSciNet  Google Scholar 

  22. Sukochev, F.A., Chilin, V.I.: The triangle inequality for operators that are measurable with respect to Hardy–Littlewood order. Izv. Akad. Nauk UzSSR Ser. Fiz. Mat. Nauk. 4, 44–50 (1988)

  23. Sukochev, F., Zanin, D.: Orbits in symmetric spaces. J. Funct. Anal. 257(1), 194–218 (2009)

  24. Stinespring W.F.: Integration theorems for gages and duality for unimodular groups. Trans. Am. Math. Soc. 90, 15–56 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  25. Takesaki M.: Theory of Operator Algebras. I. Springer, New York (1979)

    Book  MATH  Google Scholar 

  26. Zheng L., Ya-Dong Z.: k-Rotund complex normed linear spaces. J. Math. Anal. Appl. 146, 540–545 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhuang Y.D.: On k-rotund complex normed linear spaces. J. Math. Anal. Appl. 174, 218–230 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Czerwińska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czerwińska, M.M., Kamińska, A. k-Extreme Points in Symmetric Spaces of Measurable Operators. Integr. Equ. Oper. Theory 82, 189–222 (2015). https://doi.org/10.1007/s00020-014-2206-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-014-2206-1

Mathematics Subject Classification

Keywords

Navigation