Skip to main content
Log in

SARS-CoV-2 ORF6 protein targets TRIM25 for proteasomal degradation to diminish K63-linked RIG-I ubiquitination and type-I interferon induction

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Evasion and antagonism of host cellular immunity upon SARS-CoV-2 infection provide replication advantage to the virus and contribute to COVID-19 pathogenesis. We explored the ability of different SARS-CoV-2 proteins to antagonize the host’s innate immune system and found that the ORF6 protein mitigated type-I Interferon (IFN) induction and downstream IFN signaling. Our findings also corroborated previous reports that ORF6 blocks the nuclear import of IRF3 and STAT1 to inhibit IFN induction and signaling. Here we show that ORF6 directly interacts with RIG-I and blocks downstream type-I IFN induction and signaling by reducing the levels of K63-linked ubiquitinated RIG-I. This involves ORF6-mediated targeting of E3 ligase TRIM25 for proteasomal degradation, which was also observed during SARS-CoV-2 infection. The type-I IFN antagonistic activity of ORF6 was mapped to its C-terminal cytoplasmic tail, specifically to amino acid residues 52–61. Overall, we provide new insights into how SARS-CoV-2 inhibits type-I IFN induction and signaling through distinct actions of the viral ORF6 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All primary data associated with this study have been included in the manuscript. Any additional information query can be directed to corresponding author.

References

  1. Coronaviridae Study Group of the International Committee on Taxonomy of V (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544. https://doi.org/10.1038/s41564-020-0695-z

    Article  CAS  Google Scholar 

  2. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y et al (2021) The coding capacity of SARS-CoV-2. Nature 589:125–130. https://doi.org/10.1038/s41586-020-2739-1

    Article  CAS  PubMed  Google Scholar 

  3. Li JY, Zhou ZJ, Wang Q, He QN, Zhao MY, Qiu Y et al (2021) Innate immunity evasion strategies of highly pathogenic coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2. Front Microbiol 12:770656. https://doi.org/10.3389/fmicb.2021.770656

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thorne LG, Reuschl AK, Zuliani-Alvarez L, Whelan MVX, Turner J, Noursadeghi M et al (2021) SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. EMBO J 40:e107826. https://doi.org/10.15252/embj.2021107826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yin X, Riva L, Pu Y, Martin-Sancho L, Kanamune J, Yamamoto Y et al (2021) MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep 34:108628. https://doi.org/10.1016/j.celrep.2020.108628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kouwaki T, Nishimura T, Wang G, Oshiumi H (2021) RIG-I-Like receptor-mediated recognition of viral genomic RNA of severe acute respiratory syndrome coronavirus-2 and viral escape from the host innate immune responses. Front Immunol 12:700926. https://doi.org/10.3389/fimmu.2021.700926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiscott J, Nguyen TL, Arguello M, Nakhaei P, Paz S (2006) Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 25:6844–6867. https://doi.org/10.1038/sj.onc.1209941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. https://doi.org/10.1038/nri1604

    Article  CAS  PubMed  Google Scholar 

  9. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421. https://doi.org/10.1126/science.8197455

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Sastre A (2017) Ten strategies of interferon evasion by viruses. Cell Host Microbe 22:176–184. https://doi.org/10.1016/j.chom.2017.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z et al (2020) Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun 11:3810. https://doi.org/10.1038/s41467-020-17665-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H et al (2020) Evasion of type I interferon by SARS-CoV-2. Cell Rep 33:108234. https://doi.org/10.1016/j.celrep.2020.108234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V (2021) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19:155–170. https://doi.org/10.1038/s41579-020-00468-6

    Article  CAS  PubMed  Google Scholar 

  14. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P et al (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 27:325–328. https://doi.org/10.1016/j.chom.2020.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L et al (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–920. https://doi.org/10.1038/nature05732

    Article  CAS  PubMed  Google Scholar 

  16. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM et al (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583:459–468. https://doi.org/10.1038/s41586-020-2286-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Versteeg GA, Rajsbaum R, Sanchez-Aparicio MT, Maestre AM, Valdiviezo J, Shi M et al (2013) The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38:384–398. https://doi.org/10.1016/j.immuni.2012.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edelheit O, Hanukoglu A, Hanukoglu I (2009) Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 9:61. https://doi.org/10.1186/1472-6750-9-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Case JB, Bailey AL, Kim AS, Chen RE, Diamond MS (2020) Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548:39–48. https://doi.org/10.1016/j.virol.2020.05.015

    Article  CAS  PubMed  Google Scholar 

  20. Liu G, Lee JH, Parker ZM, Acharya D, Chiang JJ, van Gent M et al (2021) ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 6:467–478. https://doi.org/10.1038/s41564-021-00884-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moustaqil M, Ollivier E, Chiu HP, Van Tol S, Rudolffi-Soto P, Stevens C et al (2021) SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 10:178–195. https://doi.org/10.1080/22221751.2020.1870414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu YZ, Wang SY, Zheng ZQ, Yi H, Li WW, Xu ZS et al (2021) SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cell Mol Immunol 18:613–620. https://doi.org/10.1038/s41423-020-00571-x

    Article  CAS  PubMed  Google Scholar 

  23. Hayn M, Hirschenberger M, Koepke L, Nchioua R, Straub JH, Klute S et al (2021) Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep 35:109126. https://doi.org/10.1016/j.celrep.2021.109126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li JY, Liao CH, Wang Q, Tan YJ, Luo R, Qiu Y et al (2020) The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res 286:198074. https://doi.org/10.1016/j.virusres.2020.198074

    Article  CAS  PubMed  Google Scholar 

  25. Shemesh M, Aktepe TE, Deerain JM, McAuley JL, Audsley MD, David CT et al (2021) Correction: SARS-CoV-2 suppresses IFNbeta production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathog 17:e1010146. https://doi.org/10.1371/journal.ppat.1010146

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stukalov A, Girault V, Grass V, Karayel O, Bergant V, Urban C et al (2021) Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature 594:246–252. https://doi.org/10.1038/s41586-021-03493-4

    Article  CAS  PubMed  Google Scholar 

  27. Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H et al (2020) SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect 9:1418–1428. https://doi.org/10.1080/22221751.2020.1780953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Q, Chen Z, Huang C, Sun J, Xue M, Feng T et al (2021) Severe Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Membrane (M) and Spike (S) proteins antagonize host type I interferon response. Front Cell Infect Microbiol 11:766922. https://doi.org/10.3389/fcimb.2021.766922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vazquez C, Swanson SE, Negatu SG, Dittmar M, Miller J, Ramage HR et al (2021) SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms. PLoS ONE 16:e0253089. https://doi.org/10.1371/journal.pone.0253089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S et al (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9:221–236. https://doi.org/10.1080/22221751.2020.1719902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81:9812–9824. https://doi.org/10.1128/JVI.01012-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Riojas MA, Frank AM, Puthuveetil NP, Flores B, Parker M, King SP et al (2020) A rare deletion in SARS-CoV-2 ORF6 dramatically alters the predicted three-dimensional structure of the resultant protein. bioRxiv. https://doi.org/10.1101/2020.06.09.134460

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20:537–551. https://doi.org/10.1038/s41577-020-0288-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choi Y, Bowman JW, Jung JU (2018) Autophagy during viral infection - a double-edged sword. Nat Rev Microbiol 16:341–354. https://doi.org/10.1038/s41579-018-0003-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao G, Luo H (2006) The ubiquitin-proteasome pathway in viral infections. Can J Physiol Pharmacol 84:5–14. https://doi.org/10.1139/y05-144

    Article  CAS  PubMed  Google Scholar 

  36. Min YQ, Huang M, Sun X, Deng F, Wang H, Ning YJ (2021) Immune evasion of SARS-CoV-2 from interferon antiviral system. Comput Struct Biotechnol J 19:4217–4225. https://doi.org/10.1016/j.csbj.2021.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M et al (2020) Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 369:1249–1255. https://doi.org/10.1126/science.abc8665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo G, Gao M, Gao X, Zhu B, Huang J, Luo K et al (2021) SARS-CoV-2 non-structural protein 13 (nsp13) hijacks host deubiquitinase USP13 and counteracts host antiviral immune response. Signal Transduct Target Ther 6:119. https://doi.org/10.1038/s41392-021-00509-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsu JC, Laurent-Rolle M, Pawlak JB, Wilen CB, Cresswell P (2021) Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2101161118

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS et al (2020) SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci USA 117:28344–28354. https://doi.org/10.1073/pnas.2016650117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Addetia A, Lieberman NAP, Phung Q, Hsiang TY, Xie H, Roychoudhury P et al (2021) SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98. mBio. https://doi.org/10.1128/mBio.00065-21

    Article  PubMed  PubMed Central  Google Scholar 

  42. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection

  43. Liu Y, Olagnier D, Lin R (2016) Host and viral modulation of RIG-I-mediated antiviral immunity. Front Immunol 7:662. https://doi.org/10.3389/fimmu.2016.00662

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Ma L, Zhuang Z, Cai S, Zhao Z, Zhou L et al (2020) Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduct Target Ther 5:221. https://doi.org/10.1038/s41392-020-00332-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao Y, Sui L, Wu P, Wang W, Wang Z, Yu Y et al (2021) A dual-role of SARS-CoV-2 nucleocapsid protein in regulating innate immune response. Signal Transduct Target Ther 6:331. https://doi.org/10.1038/s41392-021-00742-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inn KS, Gack MU, Tokunaga F, Shi M, Wong LY, Iwai K et al (2011) Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol Cell 41:354–365. https://doi.org/10.1016/j.molcel.2010.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Queromes G, Destras G, Bal A, Regue H, Burfin G, Brun S et al (2021) Characterization of SARS-CoV-2 ORF6 deletion variants detected in a nosocomial cluster during routine genomic surveillance, Lyon, France. Emerg Microbes Infect 10:167–177. https://doi.org/10.1080/22221751.2021.1872351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kehrer T, Cupic A, Ye C, Yildiz S, Bouhhadou M, Crossland NA et al (2022) Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. bioRxiv. https://doi.org/10.1101/2022.10.18.512708

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Adolfo Garcia Sastre, Microbiology Department, Icahn School of Medicine, New York, and Prof. Nevan J. Krogan, Cellular Molecular Pharmacology, University of California, San Francisco, for providing plasmids for studying IFN response and SARS-CoV-2 protein expression, respectively. We thank Rajesh Thangavel Yadav for his help with creating the 3D structure model of ORF6.

Funding

We acknowledge research funding to ST Lab and infrastructure support to IISc from the DBT-IISc partnership, DBT-BIRAC, Crypto Relief Fund, L & T Trust, and DST-FIST program to IISc.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, funding acquisition, project administration, supervision, resources: ST. Methodology, data curation, formal analysis, validation, visualization: OK, MS, RN, ST. Manuscript writing—review and editing: OK, MS, RN, ST.

Corresponding author

Correspondence to Shashank Tripathi.

Ethics declarations

Conflict of interest

Authors have no competing interest to declare.

Ethical approval and consent to participate

This study was conducted in compliance with institutional biosafety guidelines, (IBSC/IISc/ST/17/2020; IBSC/IISc/ST/18/2021). All experiments involving SARS-CoV-2 virus were performed in Viral BSL3 facility, following the Indian Council of Medical Research and Department of Biotechnology recommendations.

Consent for publication

All the authors have provided consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6501 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatun, O., Sharma, M., Narayan, R. et al. SARS-CoV-2 ORF6 protein targets TRIM25 for proteasomal degradation to diminish K63-linked RIG-I ubiquitination and type-I interferon induction. Cell. Mol. Life Sci. 80, 364 (2023). https://doi.org/10.1007/s00018-023-05011-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-05011-3

Keywords

Navigation