Skip to main content
Log in

Single-cell multi-omics profiling reveals key regulatory mechanisms that poise germinal vesicle oocytes for maturation in pigs

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The molecular mechanisms controlling the transition from meiotic arrest to meiotic resumption in mammalian oocytes have not been fully elucidated. Single-cell omics technology provides a new opportunity to decipher the early molecular events of oocyte growth in mammals. Here we focused on analyzing oocytes that were collected from antral follicles in different diameters of porcine pubertal ovaries, and used single-cell M&T-seq technology to analyze the nuclear DNA methylome and cytoplasmic transcriptome in parallel for 62 oocytes. 10× Genomics single-cell transcriptomic analyses were also performed to explore the bi-directional cell–cell communications within antral follicles. A new pipeline, methyConcerto, was developed to specifically and comprehensively characterize the methylation profile and allele-specific methylation events for a single-cell methylome. We characterized the gene expressions and DNA methylations of individual oocyte in porcine antral follicle, and both active and inactive gene’s bodies displayed high methylation levels, thereby enabled defining two distinct types of oocytes. Although the methylation levels of Type II were higher than that of Type I, Type II contained nearly two times more of cytoplasmic transcripts than Type I. Moreover, the imprinting methylation patterns of Type II were more dramatically divergent than Type I, and the gene expressions and DNA methylations of Type II were more similar with that of MII oocytes. The crosstalk between granulosa cells and Type II oocytes was active, and these observations revealed that Type II was more poised for maturation. We further confirmed Insulin Receptor Substrate-1 in insulin signaling pathway is a key regulator on maturation by in vitro maturation experiments. Our study provides new insights into the regulatory mechanisms between meiotic arrest and meiotic resumption in mammalian oocytes. We also provide a new analytical package for future single-cell methylomics study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Sequence data and processed data are available under the Gene Expression Omnibus accessions GSE235731. The code of methyConcerto was deposited at github.com/hippo-yf/methyConcerto.

References

  1. van den Hurk R, Zhao J (2005) Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63:1717–1751. https://doi.org/10.1016/j.theriogenology.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  2. Eppig JJ (1996) Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev 8:485–489. https://doi.org/10.1071/rd9960485

    Article  CAS  PubMed  Google Scholar 

  3. Reyes JM, Ross PJ (2016) Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip Rev RNA 7:71–89. https://doi.org/10.1002/wrna.1316

    Article  CAS  PubMed  Google Scholar 

  4. He M, Zhang T, Yang Y, Wang C (2021) Mechanisms of oocyte maturation and related epigenetic regulation. Front Cell Dev Biol 9:654028. https://doi.org/10.3389/fcell.2021.654028

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dumdie JN, Cho K, Ramaiah M, Skarbrevik D, Mora-Castilla S, Stumpo DJ et al (2018) Chromatin modification and global transcriptional silencing in the oocyte mediated by the mRNA decay activator ZFP36L2. Dev Cell 44:392-402 e7. https://doi.org/10.1016/j.devcel.2018.01.006

    Article  CAS  Google Scholar 

  6. Chalabi Hagkarim N, Grand RJ (2020) The regulatory properties of the Ccr4-not complex. Cells. https://doi.org/10.3390/cells9112379

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanchez F, Romero S, De Vos M, Verheyen G, Smitz J (2015) Human cumulus-enclosed germinal vesicle oocytes from early antral follicles reveal heterogeneous cellular and molecular features associated with in vitro maturation capacity. Hum Reprod 30:1396–1409. https://doi.org/10.1093/humrep/dev083

    Article  CAS  PubMed  Google Scholar 

  8. Labrecque R, Fournier E, Sirard MA (2016) Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol Reprod Dev 83:558–569. https://doi.org/10.1002/mrd.22651

    Article  CAS  PubMed  Google Scholar 

  9. Pla I, Sanchez A, Pors SE, Pawlowski K, Appelqvist R, Sahlin KB et al (2021) Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation. Hum Reprod 36:756–770. https://doi.org/10.1093/humrep/deaa335

    Article  CAS  PubMed  Google Scholar 

  10. Gu C, Liu S, Wu Q, Zhang L, Guo F (2019) Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes. Cell Res 29:110–123. https://doi.org/10.1038/s41422-018-0125-4

    Article  CAS  PubMed  Google Scholar 

  11. Yu B, Dong X, Gravina S, Kartal O, Schimmel T, Cohen J et al (2017) Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation. Stem cell Rep 9:397–407. https://doi.org/10.1016/j.stemcr.2017.05.026

    Article  CAS  Google Scholar 

  12. Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C (2021) Importance of the pig as a human biomedical model. Sci Transl Med 13:eabd5758. https://doi.org/10.1126/scitranslmed.abd5758

    Article  CAS  PubMed  Google Scholar 

  13. Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS (2021) Challenges and considerations during in vitro production of porcine embryos. Cells. https://doi.org/10.3390/cells10102770

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fan X, Moustakas I, Bialecka M, Del Valle JS, Overeem AW, Louwe LA et al (2021) Single-cell transcriptomics analysis of human small antral follicles. Int J Mol Sci. https://doi.org/10.3390/ijms222111955

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lun AT, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research 5:2122. https://doi.org/10.12688/f1000research.9501.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonnet-Garnier A, Feuerstein P, Chebrout M, Fleurot R, Jan HU, Debey P et al (2012) Genome organization and epigenetic marks in mouse germinal vesicle oocytes. Int J Dev Biol 56:877–887. https://doi.org/10.1387/ijdb.120149ab

    Article  CAS  PubMed  Google Scholar 

  17. Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F (2007) Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133:85–94. https://doi.org/10.1530/REP-06-0025

    Article  CAS  PubMed  Google Scholar 

  18. Lu X, Zhang Y, Wang L, Wang L, Wang H, Xu Q et al (2021) Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting. Sci Adv 7:eabi6178. https://doi.org/10.1126/sciadv.abi6178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X et al (2016) Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537:553. https://doi.org/10.1038/nature19361

    Article  CAS  PubMed  Google Scholar 

  20. Ivanova E, Canovas S, Garcia-Martinez S, Romar R, Lopes JS, Rizos D et al (2020) DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin Epigenet 12:64. https://doi.org/10.1186/s13148-020-00857-x

    Article  CAS  Google Scholar 

  21. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peet J et al (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820. https://doi.org/10.1038/NMETH.3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castillo-Fernandez J, Herrera-Puerta E, Demond H, Clark SJ, Hanna CW, Hemberger M et al (2020) Increased transcriptome variation and localised DNA methylation changes in oocytes from aged mice revealed by parallel single-cell analysis. Aging Cell 19:e13278. https://doi.org/10.1111/acel.13278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gahurova L, Tomizawa SI, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J et al (2017) Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenet Chromat 10:25. https://doi.org/10.1186/s13072-017-0133-5

    Article  CAS  Google Scholar 

  24. Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530–538. https://doi.org/10.1006/geno.2002.6732

    Article  CAS  PubMed  Google Scholar 

  25. Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet 13:91–94. https://doi.org/10.1038/ng0596-91

    Article  CAS  PubMed  Google Scholar 

  26. Brandeis M, Kafri T, Ariel M, Chaillet JR, McCarrey J, Razin A et al (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 12:3669–3677. https://doi.org/10.1002/j.1460-2075.1993.tb06041.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng LP, Huang J, Zhang DL, Xu LQ, Li F, Wu L et al (2012) c-erbB2 and c-myb induce mouse oocyte maturation involving activation of maturation promoting factor. DNA Cell Biol 31:164–170. https://doi.org/10.1089/dna.2011.1219

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Cai H, Wang X, Zhang M, Liu B, Chen Z et al (2019) HDAC3 maintains oocyte meiosis arrest by repressing amphiregulin expression before the LH surge. Nat Commun 10:5719. https://doi.org/10.1038/s41467-019-13671-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sisci D, Morelli C, Cascio S, Lanzino M, Garofalo C, Reiss K et al (2007) The estrogen receptor alpha:insulin receptor substrate 1 complex in breast cancer: structure-function relationships. Ann Oncol 18(Suppl 6):vi81–vi85. https://doi.org/10.1093/annonc/mdm232

    Article  PubMed  Google Scholar 

  30. Ozoe A, Sone M, Fukushima T, Kataoka N, Arai T, Chida K et al (2013) Insulin receptor substrate-1 (IRS-1) forms a ribonucleoprotein complex associated with polysomes. FEBS Lett 587:2319–2324. https://doi.org/10.1016/j.febslet.2013.05.066

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang HM, Yu Y et al (2018) Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell 72:1021-1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029

    Article  CAS  PubMed  Google Scholar 

  32. Fan X, Bialecka M, Moustakas I, Lam E, Torrens-Juaneda V, Borggreven NV et al (2019) Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun 10:3164. https://doi.org/10.1038/s41467-019-11036-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M et al (2020) Single-cell transcriptomic atlas of primate ovarian aging. Cell 180:585-600 e19. https://doi.org/10.1016/j.cell.2020.01.009

    Article  CAS  PubMed  Google Scholar 

  34. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX et al (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13:229–232. https://doi.org/10.1038/nmeth.3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-Mehouas S et al (2015) Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol 16:209. https://doi.org/10.1186/s13059-015-0769-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inoue A, Nakajima R, Nagata M, Aoki F (2008) Contribution of the oocyte nucleus and cytoplasm to the determination of meiotic and developmental competence in mice. Hum Reprod 23:1377–1384. https://doi.org/10.1093/humrep/den096

    Article  CAS  PubMed  Google Scholar 

  37. Mu H, Zhang T, Yang Y, Zhang D, Gao J, Li J et al (2021) METTL3-mediated mRNA N(6)-methyladenosine is required for oocyte and follicle development in mice. Cell Death Dis 12:989. https://doi.org/10.1038/s41419-021-04272-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M et al (2016) YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7:12626. https://doi.org/10.1038/ncomms12626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu J, Gao M, Xu S, Chen Y, Wu K, Liu H et al (2020) YTHDF2/3 are required for somatic reprogramming through different RNA deadenylation pathways. Cell Rep 32:108120. https://doi.org/10.1016/j.celrep.2020.108120

    Article  CAS  PubMed  Google Scholar 

  40. Jayne S, Zwartjes CG, van Schaik FM, Timmers HT (2006) Involvement of the SMRT/NCoR-HDAC3 complex in transcriptional repression by the CNOT2 subunit of the human Ccr4-Not complex. Biochem J 398:461–467. https://doi.org/10.1042/BJ20060406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK et al (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA 97:7202–7207. https://doi.org/10.1073/pnas.97.13.7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Underhill C, Qutob MS, Yee SP, Torchia J (2000) A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 275:40463–40470. https://doi.org/10.1074/jbc.M007864200

    Article  CAS  PubMed  Google Scholar 

  43. De La Fuente R (2006) Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol 292:1–12. https://doi.org/10.1016/j.ydbio.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  44. Ma P, de Waal E, Weaver JR, Bartolomei MS, Schultz RM (2015) A DNMT3A2-HDAC2 complex is essential for genomic imprinting and genome integrity in mouse oocytes. Cell Rep 13:1552–1560. https://doi.org/10.1016/j.celrep.2015.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li S, Peng Y, Landsman D, Panchenko AR (2022) DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Res 50:1864–1874. https://doi.org/10.1093/nar/gkac097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma P, Schultz RM (2013) Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. PLoS Genet 9:e1003377. https://doi.org/10.1371/journal.pgen.1003377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Downs SM (2015) Nutrient pathways regulating the nuclear maturation of mammalian oocytes. Reprod Fertil Dev 27:572–582. https://doi.org/10.1071/RD14343

    Article  CAS  PubMed  Google Scholar 

  48. Templeman NM, Luo S, Kaletsky R, Shi C, Ashraf J, Keyes W et al (2018) Insulin signaling regulates oocyte quality maintenance with age via cathepsin B activity. Curr Biol CB 28:753–60 e4. https://doi.org/10.1016/j.cub.2018.01.052

    Article  CAS  PubMed  Google Scholar 

  49. Das D, Arur S (2017) Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev 84:444–459. https://doi.org/10.1002/mrd.22806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Itami N, Munakata Y, Shirasuna K, Kuwayama T, Iwata H (2017) Promotion of glucose utilization by insulin enhances granulosa cell proliferation and developmental competence of porcine oocyte grown in vitro. Zygote 25:65–74. https://doi.org/10.1017/S0967199416000356

    Article  CAS  PubMed  Google Scholar 

  51. Yuan Y, Spate LD, Redel BK, Tian Y, Zhou J, Prather RS et al (2017) Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc Natl Acad Sci USA 114:E5796–E5804. https://doi.org/10.1073/pnas.1703998114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu W, Xin Q, Wang X, Wang S, Wang H, Zhang W et al (2017) Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals. Cell Death Dis 8:e2662. https://doi.org/10.1038/cddis.2017.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J, Wu A, Sun H, Drakas R, Garofalo C, Cascio S et al (2005) Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem 280:29912–29920. https://doi.org/10.1074/jbc.M504516200

    Article  CAS  PubMed  Google Scholar 

  54. Wu A, Chen J, Baserga R (2008) Nuclear insulin receptor substrate-1 activates promoters of cell cycle progression genes. Oncogene 27:397–403. https://doi.org/10.1038/sj.onc.1210636

    Article  CAS  PubMed  Google Scholar 

  55. Amine H, Ripin N, Sharma S, Stoecklin G, Allain FH, Seraphin B et al (2021) A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biol 18:2450–2465. https://doi.org/10.1080/15476286.2021.1925476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yi H, Park J, Ha M, Lim J, Chang H, Kim VN (2018) PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol Cell 70:1081–1088. https://doi.org/10.1016/j.molcel.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  57. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  58. Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing( scBS-seq). Nat Protoc 12:534-U159. https://doi.org/10.1038/nprot.2016.187

    Article  CAS  PubMed  Google Scholar 

  59. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  61. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z et al (2021) KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 49:W317–W325. https://doi.org/10.1093/nar/gkab447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. https://doi.org/10.1093/bioinformatics/btp101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo W, Fiziev P, Yan W, Cokus S, Sun X, Zhang MQ et al (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genom 14:774. https://doi.org/10.1186/1471-2164-14-774

    Article  CAS  Google Scholar 

  66. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu P, Gao Y, Guo W, Zhu P (2019) Using local alignment to enhance single-cell bisulfite sequencing data efficiency. Bioinformatics 35:3273–3278. https://doi.org/10.1093/bioinformatics/btz125

    Article  CAS  PubMed  Google Scholar 

  68. Guo W, Zhu P, Pellegrini M, Zhang MQ, Wang X, Ni Z (2018) CGmapTools improves the precision of heterozygous SNV calls and supports allele-specific methylation detection and visualization in bisulfite-sequencing data. Bioinformatics 34:381–387. https://doi.org/10.1093/bioinformatics/btx595

    Article  CAS  PubMed  Google Scholar 

  69. Bailey TL, Grant CESEA (2021) Simple enrichment analysis of motifs. BioRxiv 3:21. https://doi.org/10.1101/2021.08.23.457422

    Article  Google Scholar 

  70. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A et al (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87. https://doi.org/10.1186/gb-2012-13-10-R87

    Article  PubMed  PubMed Central  Google Scholar 

  71. Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J et al (2013) A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS ONE 8:e81148. https://doi.org/10.1371/journal.pone.0081148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd et al (2019) Comprehensive integration of single-cell data. Cell 177:1888–902 e21. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329–37 e4. https://doi.org/10.1016/j.cels.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S, Petropoulos S et al (2020) Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun 11:1147. https://doi.org/10.1038/s41467-020-14936-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wen L, Tang F (2019) Human germline cell development: from the perspective of single-cell sequencing. Mol Cell 76:320–328. https://doi.org/10.1016/j.molcel.2019.08.025

    Article  CAS  PubMed  Google Scholar 

  76. Poulsen LC, Botkjaer JA, Ostrup O, Petersen KB, Andersen CY, Grondahl ML et al (2020) Two waves of transcriptomic changes in periovulatory human granulosa cells. Hum Reprod 35:1230–1245. https://doi.org/10.1093/humrep/deaa043

    Article  CAS  PubMed  Google Scholar 

  77. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH et al (2021) Inference and analysis of cell-cell communication using Cell Chat. Nat Commun 12:1088. https://doi.org/10.1038/s41467-021-21246-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515030054), the earmarked fund for China Agriculture Research System (CARS-35), the National Natural Science Foundation of China (31902131, 32072694), the Key R&D Program of Guangdong Province Project (2022B0202090002) and the Agricultural Sciences and Technology Innovation Program of CAAS.

Author information

Authors and Affiliations

Authors

Contributions

FG, XY and JL conceived the study. NC, NL, JY, XP and YT collected samples and performed in vitro experiments. JW and DH performed scM&T-seq library construction. XY and JL provided samples. NC and YF carried out bioinformatic analysis. FG, XY and YF drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fei Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All experiments were conducted with strict reference to the Regulations for Administration of Affairs Concerning Experimental Animals, and approved by the Animal Care and Use Committee of South China Agricultural University with approval number: 2020f036.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9556 KB)

Supplementary file2 (XLSX 496 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Chen, N., Feng, Y. et al. Single-cell multi-omics profiling reveals key regulatory mechanisms that poise germinal vesicle oocytes for maturation in pigs. Cell. Mol. Life Sci. 80, 222 (2023). https://doi.org/10.1007/s00018-023-04873-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04873-x

Keywords

Navigation