Skip to main content
Log in

Effect of early vs. late time-restricted high-fat feeding on circadian metabolism and weight loss in obese mice

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Time-restricted feeding (TRF) limits the time and duration of food availability without calorie reduction. Although a high-fat (HF) diet leads to disrupted circadian rhythms, TRF can prevent metabolic diseases, emphasizing the importance of the timing component. However, the question of when to implement the feeding window and its metabolic effect remains unclear, specifically in obese and metabolically impaired animals. Our aim was to study the effect of early vs. late TRF-HF on diet-induced obese mice in an 8:16 light–dark cycle. C57BL male mice were fed ad libitum a high-fat diet for 14 weeks after which they were given the same food during the early (E-TRF-HF) or late (L-TRF-HF) 8 h of the dark phase for 5 weeks. The control groups were fed ad libitum either a high-fat (AL-HF) or a low-fat diet (AL-LF). Respiratory exchange ratio (RER) was highest for the AL-LF group and the lowest for the AL-HF group. E-TRF-HF led to lower body weight and fat depots, lower glucose, C-peptide, insulin, cholesterol, leptin, TNFα, and ALT levels compared with L-TRF-HF- and AL-HF-fed mice. TRF-HF regardless whether it was early or late led to reduced inflammation and fat accumulation compared with AL-HF-fed mice. E-TRF-HF led to advanced liver circadian rhythms with higher amplitudes and daily expression levels of clock proteins. In addition, TRF-HF led to improved metabolic state in muscle and adipose tissue. In summary, E-TRF-HF leads to increased insulin sensitivity and fat oxidation and decreased body weight, fat profile and inflammation contrary to AL-HF-fed, but comparable to AL-LF-fed mice. These results emphasize the importance of timed feeding compared to ad libitum feeding, specifically to the early hours of the activity period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

Abbreviations

ACC:

Acetyl CoA carboxylase

AL:

Ad libitum

AMPK:

AMP-activated protein kinase

DD:

Constant dark

FAS:

Fatty acid synthase

HDL:

High-density lipoprotein

HF:

High fat

HOMA-IR:

Homeostasis model assessment of insulin resistance

LD:

Light–dark

LDL:

Low-density lipoprotein

LF:

Low-fat

PPARα:

Peroxisome proliferator-activated receptor α

TG:

Triglycerides

TNFα:

Tumor necrosis factor α

TRF:

Time-restricted feeding

ZT:

Zeitgeber Time

References

  1. Chaix A, Manoogian ENC, Melkani GC, Panda S (2019) Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr 39:291–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Froy O, Garaulet M (2018) The circadian clock in white and brown adipose tissue: mechanistic, endocrine, and clinical aspects. Endocr Rev 39:261–273

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cox KH, Takahashi JS (2019) Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol 63:R93–R102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  6. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  CAS  PubMed  Google Scholar 

  7. Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L, Delaunay F, Wahli W, Laudet V (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20:1715–1727

    Article  CAS  PubMed  Google Scholar 

  8. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH (2007) Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem 282:20794–20798

    Article  CAS  PubMed  Google Scholar 

  10. Froy O (2010) Metabolism and circadian rhythms—implications for obesity. Endocr Rev 31:1–24

    Article  CAS  PubMed  Google Scholar 

  11. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sherman H, Frumin I, Gutman R, Chapnik N, Lorentz A, Meylan J, le Coutre J, Froy O (2011) Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers. J Cell Mol Med 15:2745–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gallop MR, Tobin SY, Chaix A (2022) Finding balance: understanding the energetics of time-restricted feeding in mice. Obesity (Silver Spring) 31:22–39

    Article  PubMed  Google Scholar 

  15. Duncan MJ, Smith JT, Narbaiza J, Mueez F, Bustle LB, Qureshi S, Fieseler C, Legan SJ (2016) Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol Behav 167:1–9

    Article  CAS  PubMed  Google Scholar 

  16. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20:991–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sundaram S, Yan L (2016) Time-restricted feeding reduces adiposity in mice fed a high-fat diet. Nutr Res 36:603–611

    Article  CAS  PubMed  Google Scholar 

  19. Bushman T, Lin TY, Chen X (2023) Depot-dependent impact of time-restricted feeding on adipose tissue metabolism in high fat diet-induced obese male mice. Nutrients 15:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM (2018) Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 27:1212-1221 e1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, Wang X, Fleischer JG, Navlakha S, Panda S, Taub PR (2020) Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 31:92-104 e105

    Article  CAS  PubMed  Google Scholar 

  22. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421

    Article  CAS  PubMed  Google Scholar 

  23. Barnea M, Madar Z, Froy O (2009) High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150:161–168

    Article  CAS  PubMed  Google Scholar 

  24. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O (2012) Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 26:3493–3502

    Article  CAS  PubMed  Google Scholar 

  25. Gavish Z, Ben-Haim M, Arav A (2008) Cryopreservation of whole murine and porcine livers. Rejuvenation Res 11:765–772

    Article  PubMed  Google Scholar 

  26. Sherman H, Froy O (2008) Expression of human beta-defensin 1 is regulated via c-Myc and the biological clock. Mol Immunol 45:3163–3167

    Article  CAS  PubMed  Google Scholar 

  27. Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kukat A, Dogan SA, Edgar D, Mourier A, Jacoby C, Maiti P, Mauer J, Becker C, Senft K, Wibom R, Kudin AP, Hultenby K, Flogel U, Rosenkranz S, Ricquier D, Kunz WS, Trifunovic A (2014) Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity. PLoS Genet 10:e1004385

    Article  PubMed  PubMed Central  Google Scholar 

  29. Woodie LN, Luo Y, Wayne MJ, Graff EC, Ahmed B, O’Neill AM, Greene MW (2018) Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metabolism 82:1–13

    Article  CAS  PubMed  Google Scholar 

  30. Tsameret S, Jakubowicz D, Landau Z, Wainstein J, Ganz T, Raz I, Chapnik N, Froy O (2021) Serum from type 2 diabetes patients consuming a three-meal diet resets circadian rhythms in cultured hepatocytes. Diabetes Res Clin Pract 178:108941

    Article  CAS  PubMed  Google Scholar 

  31. Jakubowicz D, Landau Z, Tsameret S, Wainstein J, Raz I, Ahren B, Chapnik N, Barnea M, Ganz T, Menaged M, Mor N, Bar-Dayan Y, Froy O (2019) Reduction in glycated hemoglobin and daily insulin dose alongside circadian clock upregulation in patients with type 2 diabetes consuming a three-meal diet: a randomized clinical trial. Diabetes Care 42:2171–2180

    Article  CAS  PubMed  Google Scholar 

  32. Jakubowicz D, Wainstein J, Landau Z, Raz I, Ahren B, Chapnik N, Ganz T, Menaged M, Barnea M, Bar-Dayan Y, Froy O (2017) Influences of breakfast on clock gene expression and postprandial glycemia in healthy individuals and individuals with diabetes: a randomized clinical trial. Diabetes Care 40:1573–1579

    Article  CAS  PubMed  Google Scholar 

  33. Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL (2019) Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients 11:2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schroder JD, Falqueto H, Manica A, Zanini D, de Oliveira T, de Sa CA, Cardoso AM, Manfredi LH (2021) Effects of time-restricted feeding in weight loss, metabolic syndrome and cardiovascular risk in obese women. J Transl Med 19:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Regmi P, Chaudhary R, Page AJ, Hutchison AT, Vincent AD, Liu B, Heilbronn L (2021) Early or delayed time-restricted feeding prevents metabolic impact of obesity in mice. J Endocrinol 248:75–86

    Article  CAS  PubMed  Google Scholar 

  36. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hatori M, Panda S (2010) CRY links the circadian clock and CREB-mediated gluconeogenesis. Cell Res 20:1285–1288

    Article  PubMed  Google Scholar 

  38. Froy O (2013) A CRY for help to fight fat. Am J Physiol Endocrinol Metab 304:E1129–E1130

    Article  CAS  PubMed  Google Scholar 

  39. Gariballa S, Alkaabi J, Yasin J, Al Essa A (2019) Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr Disord 19:55

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roy B, Palaniyandi SS (2021) Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci 11:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fisman EZ, Tenenbaum A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 13:103

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Article  CAS  PubMed  Google Scholar 

  43. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  CAS  PubMed  Google Scholar 

  45. Martin H (2010) Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res 690:57–63

    Article  CAS  PubMed  Google Scholar 

  46. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dallmann R, Weaver DR (2010) Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol Int 27:1317–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gomez-Abellan P, Hernandez-Morante JJ, Lujan JA, Madrid JA, Garaulet M (2008) Clock genes are implicated in the human metabolic syndrome. Int J Obes (Lond) 32:121–128

    Article  CAS  PubMed  Google Scholar 

  49. Barnea M, Madar Z, Froy O (2010) High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue. Obesity (Silver Spring) 18:230–238

    Article  CAS  PubMed  Google Scholar 

  50. Cano P, Cardinali DP, Rios-Lugo MJ, Fernandez-Mateos MP, Reyes Toso CF, Esquifino AI (2009) Effect of a high-fat diet on 24-hour pattern of circulating adipocytokines in rats. Obesity (Silver Spring) 17:1866–1871

    Article  CAS  PubMed  Google Scholar 

  51. Cha MC, Chou CJ, Boozer CN (2000) High-fat diet feeding reduces the diurnal variation of plasma leptin concentration in rats. Metabolism 49:503–507

    Article  CAS  PubMed  Google Scholar 

  52. Havel PJ, Townsend R, Chaump L, Teff K (1999) High-fat meals reduce 24-h circulating leptin concentrations in women. Diabetes 48:334–341

    Article  CAS  PubMed  Google Scholar 

  53. Deota S, Lin T, Chaix A, Williams A, Le H, Calligaro H, Ramasamy R, Huang L, Panda S (2023) Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metab 35:150-165 e154

    Article  CAS  PubMed  Google Scholar 

  54. Cassone VM, Stephan FK (2002) Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight. Nutrition 18:814–819

    Article  PubMed  Google Scholar 

  55. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  56. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17:2100–2102

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ofer Gover and Barel Mishal for their assistance with the Metabolic System and Dr. Zohar Gavish at Gavish Research Services for the histology work.

Funding

This research was funded by the Israel Science Foundation (grant no. 1675/19). Shani Tsameret is a fellow of the Ariane de Rothschild Women Doctoral Program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, OF and ST; methodology, ST and NC; validation, OF, ST, and NC; formal analysis, ST; investigation, ST and NC; resources, OF; data curation, ST and NC; writing—original draft preparation, ST; writing—review and editing, OF; supervision, OF; funding acquisition, OF. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Oren Froy.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval

The animal study was reviewed and approved by the joint ethics committee (IACUC) of the Hebrew University and Hadassah Medical Center.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2282 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsameret, S., Chapnik, N. & Froy, O. Effect of early vs. late time-restricted high-fat feeding on circadian metabolism and weight loss in obese mice. Cell. Mol. Life Sci. 80, 180 (2023). https://doi.org/10.1007/s00018-023-04834-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04834-4

Keywords

Navigation