Skip to main content
Log in

A Rab10–ACAP1–Arf6 GTPases cascade modulates M4 muscarinic acetylcholine receptor trafficking and signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Membrane trafficking processes regulate the G protein-coupled receptor activity. The muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, but the cellular machineries that control the trafficking of these receptors remain largely elusive. Here, we revealed the role of the small GTPase Rab10 as a negative regulator for the post-activation trafficking of M4 mAChR and the underlying mechanism. We show that constitutively active Rab10 arrests the receptor within Rab5-positive early endosomes and significantly hinders the resensitization of M4-mediated Ca2+ signaling. Mechanistically, M4 binds to Rab10-GTP, which requires the motif 386RKKRQMAA393 (R386-A393) within the third intracellular loop. Moreover, Rab10-GTP inactivates Arf6 by recruiting the Arf6 GTPase-activating protein, ACAP1. Strikingly, deletion of the motif R386-A393 causes M4 to bypass the control by Rab10 and switch to the Rab4-facilitated fast recycling pathway, thus reusing the receptor. Therefore, Rab10 couples the cargo sorting and membrane trafficking regulation through cycle between GTP-bound and GDP-bound state. Our findings suggest a model that Rab10 binds to the M4 like a molecular brake and controls the receptor’s transport through endosomes, thus modulating the signaling, and this regulation is specific among the mAChR subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of dada and material

All plasmids and data generated in this study will be freely provided upon request to the corresponding author.

Abbreviations

AD:

Alzheimer’s disease

A568-Tf:

Alexa568-labeled Transferrin

Arf6:

ADP-ribosylation factor 6

β1AR:

β1 Adrenoceptor

CCh:

Carbachol

CDE:

Clathrin-dependent endocytic

CHC:

Clathrin heavy chain

CHX:

Cycloheximide

CIE:

Clathrin-independent endocytic

Co-IP:

Co-immunoprecipitation

DOPr:

δ-Opioid receptor

EE:

Early endosome

EHBP-1:

Effector EH domain binding protein 1

ER:

Endoplasmic reticulum

FI:

Fluorescence intensity

GGA3:

Golgi-associated, gamma adaptin ear-containing, Arf-binding protein 3

GIPC:

i-interacting protein C terminus

GPCR:

G protein-coupled receptor

GST:

Glutathione S-transferase

GST-GGA3-PBD:

Protein 3 binding domain (PBD) of GGA3 fused to glutathione S-transferase

mAChRs:

Muscarinic acetylcholine receptors

LHR:

Luteinizing hormone receptor

PBD:

Protein 3 binding domain

PDZ:

Postsynaptic density-95/Discs large/Zonula occludens 1

PM:

Plasma membrane

PTX:

Pertussis toxin

RE:

Recycling endosome

SNX27:

Sorting nexin 27

TAC:

IL-2 receptor α-chain

TfR:

Transferrin receptor

TLR4:

Toll-like receptor 4

WT:

Wild type

References

  1. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842. https://doi.org/10.1038/nrd.2017.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei Z, Zhang M, Li C, Huang W, Fan Y, Guo J, Khater M, Fukuda M, Dong Z, Hu G, Wu G (2019) Specific TBC domain-containing proteins control the ER-Golgi-plasma membrane trafficking of GPCRs. Cell Rep 28:554–566. https://doi.org/10.1016/j.celrep.2019.05.033. (e554)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sposini S, Hanyaloglu AC (2017) Spatial encryption of G protein-coupled receptor signaling in endosomes; Mechanisms and applications. Biochem Pharmacol 143:1–9. https://doi.org/10.1016/j.bcp.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  4. Gupta MK, Mohan ML, Naga Prasad SV (2018) G Protein-coupled receptor resensitization paradigms. Int Rev Cell Mol Biol 339:63–91. https://doi.org/10.1016/bs.ircmb.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  5. Parent A, Hamelin E, Germain P, Parent JL (2009) Rab11 regulates the recycling of the β2-adrenergic receptor through a direct interaction. Biochem J 418:163–172. https://doi.org/10.1042/BJ20080867

    Article  CAS  PubMed  Google Scholar 

  6. Abdullah N, Beg M, Soares D, Dittman JS, McGraw TE (2016) Downregulation of a GPCR by β-arrestin2-mediated switch from an endosomal to a TGN recycling pathway. Cell Rep 17:2966–2978. https://doi.org/10.1016/j.celrep.2016.11.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sposini S, Jean-Alphonse FG, Ayoub MA, Oqua A, West C, Lavery S, Brosens JJ, Reiter E, Hanyaloglu AC (2017) Integration of GPCR signaling and sorting from very early endosomes via opposing APPL1 mechanisms. Cell Rep 21:2855–2867. https://doi.org/10.1016/j.celrep.2017.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132. https://doi.org/10.1038/nrm1315

    Article  CAS  PubMed  Google Scholar 

  9. Romero G, von Zastrow M, Friedman PA (2011) Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. Adv Pharmacol 62:279–314. https://doi.org/10.1016/B978-0-12-385952-5.00003-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanyaloglu AC, von Zastrow M (2008) Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–568. https://doi.org/10.1146/annurev.pharmtox.48.113006.094830

    Article  CAS  PubMed  Google Scholar 

  11. Nooh MM, Mancarella S, Bahouth SW (2018) Novel paradigms governing β1-adrenergic receptor trafficking in primary adult rat cardiac myocytes. Mol Pharmacol 94:862–875. https://doi.org/10.1124/mol.118.112045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jean-Alphonse F, Bowersox S, Chen S, Beard G, Puthenveedu MA, Hanyaloglu AC (2014) Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments. J Biol Chem 289:3960–3977. https://doi.org/10.1074/jbc.M113.526350

    Article  CAS  PubMed  Google Scholar 

  13. Paquet M, Asay MJ, Fam SR, Inuzuka H, Castleberry AM, Oller H, Smith Y, Yun CC, Traynelis SF, Hall RA (2006) The PDZ scaffold NHERF-2 interacts with mGluR5 and regulates receptor activity. J Biol Chem 281:29949–29961. https://doi.org/10.1074/jbc.M602262200

    Article  CAS  PubMed  Google Scholar 

  14. Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M (2011) SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 13:715–721. https://doi.org/10.1038/ncb2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirakawa T, Galet C, Kishi M, Ascoli M (2003) GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR. J Biol Chem 278:49348–49357. https://doi.org/10.1074/jbc.M306557200

    Article  CAS  PubMed  Google Scholar 

  16. Marchese A, Paing MM, Temple BR, Trejo J (2008) G protein-coupled receptor sorting to endosomes and lysosomes. Ann Rev Pharmacol Toxicol 48:601–629. https://doi.org/10.1146/annurev.pharmtox.48.113006.094646

    Article  CAS  Google Scholar 

  17. Zenko D, Hislop JN (2018) Regulation and trafficking of muscarinic acetylcholine receptors. Neuropharmacology 136:374–382. https://doi.org/10.1016/j.neuropharm.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  18. van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A (2020) Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front Pharmacol 11:606656. https://doi.org/10.3389/fphar.2020.606656

    Article  CAS  PubMed  Google Scholar 

  19. Yohn SE, Conn PJ (2018) Positive allosteric modulation of M1 and M4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology 136:438–448. https://doi.org/10.1016/j.neuropharm.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  20. Foster DJ, Choi DL, Conn PJ, Rook JM (2014) Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr Dis Treat 10:183–191. https://doi.org/10.2147/NDT.S55104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vogler O, Nolte B, Voss M, Schmidt M, Jakobs KH, van Koppen CJ (1999) Regulation of muscarinic acetylcholine receptor sequestration and function by beta-arrestin. J Biol Chem 274:12333–12338. https://doi.org/10.1074/jbc.274.18.12333

    Article  CAS  PubMed  Google Scholar 

  22. Volpicelli LA, Lah JJ, Fang G, Goldenring JR, Levey AI (2002) Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor. J Neurosci 22:9776–9784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bao Z, Zhou S, Zhou H (2020) Sorting Nexin 27 as a potential target in G proteincoupled receptor recycling for cancer therapy (Review). Oncol Rep 44:1779–1786. https://doi.org/10.3892/or.2020.7766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525. https://doi.org/10.1038/nrm2728

    Article  CAS  PubMed  Google Scholar 

  25. Chua CEL, Tang BL (2018) Rab 10-a traffic controller in multiple cellular pathways and locations. J Cell Physiol 233:6483–6494. https://doi.org/10.1002/jcp.26503

    Article  CAS  PubMed  Google Scholar 

  26. Dong C, Wu G (2013) G-protein-coupled receptor interaction with small GTPases. Methods Enzymol 522:97–108. https://doi.org/10.1016/B978-0-12-407865-9.00006-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Degrandmaison J, Abdallah K, Blais V, Genier S, Lalumiere MP, Bergeron F, Cahill CM, Boulter J, Lavoie CL, Parent JL, Gendron L (2020) In vivo mapping of a GPCR interactome using knockin mice. Proc Natl Acad Sci USA 117:13105–13116. https://doi.org/10.1073/pnas.1917906117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei Z, Xu X, Fang Y, Khater M, Naughton SX, Hu G, Terry AV Jr, Wu G (2021) Rab43 GTPase directs postsynaptic trafficking and neuron-specific sorting of G protein-coupled receptors. J Biol Chem 296:100517. https://doi.org/10.1016/j.jbc.2021.100517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jordan KL, Koss DJ, Outeiro TF, Giorgini F (2022) Therapeutic targeting of Rab GTPases: relevance for Alzheimer’s disease. Biomedicines. https://doi.org/10.3390/biomedicines10051141

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brewer PD, Habtemichael EN, Romenskaia I, Mastick CC, Coster AC (2016) Glut4 is sorted from a Rab10 GTPase-independent constitutive recycling pathway into a highly insulin-responsive Rab10 GTPase-dependent sequestration pathway after adipocyte differentiation. J Biol Chem 291:773–789. https://doi.org/10.1074/jbc.M115.694919

    Article  CAS  PubMed  Google Scholar 

  31. Borchers AC, Langemeyer L, Ungermann C (2021) Who’s in control Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol. https://doi.org/10.1083/jcb.202105120

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang P, Liu H, Wang Y, Liu O, Zhang J, Gleason A, Yang Z, Wang H, Shi A, Grant BD (2016) RAB-10 promotes EHBP-1 bridging of filamentous actin and tubular recycling endosomes. PLoS Genet 12:e1006093. https://doi.org/10.1371/journal.pgen.1006093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wan M, Zhang W, Tian Y, Xu C, Xu T, Liu J, Zhang R (2015) Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor. Sci Rep 5:11408. https://doi.org/10.1038/srep11408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schuck S, Gerl MJ, Ang A, Manninen A, Keller P, Mellman I, Simons K (2007) Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic 8:47–60. https://doi.org/10.1111/j.1600-0854.2006.00506.x

    Article  CAS  PubMed  Google Scholar 

  35. Eguez L, Lee A, Chavez JA, Miinea CP, Kane S, Lienhard GE, McGraw TE (2005) Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab 2:263–272. https://doi.org/10.1016/j.cmet.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  36. Tian Y, Kang Q, Shi X, Wang Y, Zhang N, Ye H, Xu Q, Xu T, Zhang R (2021) SNX-3 mediates retromer-independent tubular endosomal recycling by opposing EEA-1-facilitated trafficking. PLoS Genet 17:e1009607. https://doi.org/10.1371/journal.pgen.1009607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Volpicelli LA, Lah JJ, Levey AI (2001) Rab5-dependent trafficking of the m4 muscarinic acetylcholine receptor to the plasma membrane, early endosomes, and multivesicular bodies. J Biol Chem 276:47590–47598. https://doi.org/10.1074/jbc.M106535200

    Article  CAS  PubMed  Google Scholar 

  38. Krudewig R, Langer B, Vogler O, Markschies N, Erl M, Jakobs KH, van Koppen CJ (2000) Distinct internalization of M2 muscarinic acetylcholine receptors confers selective and long-lasting desensitization of signaling to phospholipase C. J Neurochem 74:1721–1730. https://doi.org/10.1046/j.1471-4159.2000.0741721.x

    Article  CAS  PubMed  Google Scholar 

  39. Babbey CM, Ahktar N, Wang E, Chen CC, Grant BD, Dunn KW (2006) Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol Biol Cell 17:3156–3175. https://doi.org/10.1091/mbc.e05-08-0799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miinea CP, Sano H, Kane S, Sano E, Fukuda M, Peranen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391:87–93. https://doi.org/10.1042/BJ20050887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naslavsky N, Caplan S (2018) The enigmatic endosome—sorting the ins and outs of endocytic trafficking. J Cell Sci. https://doi.org/10.1242/jcs.216499

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hashimoto Y, Morisawa K, Saito H, Jojima E, Yoshida N, Haga T (2008) Muscarinic M4 receptor recycling requires a motif in the third intracellular loop. J Pharmacol Exp Ther 325:947–953. https://doi.org/10.1124/jpet.107.135095

    Article  CAS  PubMed  Google Scholar 

  43. Donaldson JG, Porat-Shliom N, Cohen LA (2009) Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 21:1–6. https://doi.org/10.1016/j.cellsig.2008.06.020

    Article  CAS  PubMed  Google Scholar 

  44. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358. https://doi.org/10.1038/nrm1910

    Article  CAS  PubMed  Google Scholar 

  45. Houndolo T, Boulay PL, Claing A (2005) G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J Biol Chem 280:5598–5604. https://doi.org/10.1074/jbc.M411456200

    Article  CAS  PubMed  Google Scholar 

  46. Reiner C, Nathanson NM (2008) The internalization of the M2 and M4 muscarinic acetylcholine receptors involves distinct subsets of small G-proteins. Life Sci 82:718–727. https://doi.org/10.1016/j.lfs.2008.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D’Souza-Schorey C, van Donselaar E, Hsu VW, Yang C, Stahl PD, Peters PJ (1998) ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J Cell Biol 140:603–616. https://doi.org/10.1083/jcb.140.3.603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Donaldson JG (2003) Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278:41573–41576. https://doi.org/10.1074/jbc.R300026200

    Article  CAS  PubMed  Google Scholar 

  49. Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L, Veerle B, Coen K, Munck S, De Strooper B, Schiavo G, Annaert W (2011) ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci USA 108:E559-568. https://doi.org/10.1073/pnas.1100745108

    Article  PubMed  PubMed Central  Google Scholar 

  50. Van Acker T, Tavernier J, Peelman F (2019) The small GTPase Arf6: an overview of its mechanisms of action and of its role in host(–)pathogen interactions and innate immunity. Int J Mol Sci. https://doi.org/10.3390/ijms20092209

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pfeffer SR (2012) Rab GTPase localization and Rab cascades in Golgi transport. Biochem Soc Trans 40:1373–1377. https://doi.org/10.1042/BST20120168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kobayashi H, Fukuda M (2012) Rab35 regulates Arf6 activity through centaurin-β2 (ACAP2) during neurite outgrowth. J Cell Sci 125:2235–2243. https://doi.org/10.1242/jcs.098657

    Article  CAS  PubMed  Google Scholar 

  53. Shi A, Liu O, Koenig S, Banerjee R, Chen CC, Eimer S, Grant BD (2012) RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci USA 109:E2306-2315. https://doi.org/10.1073/pnas.1205278109

    Article  PubMed  PubMed Central  Google Scholar 

  54. Allaire PD, Seyed Sadr M, Chaineau M, Seyed Sadr E, Konefal S, Fotouhi M, Maret D, Ritter B, Del Maestro RF, McPherson PS (2013) Interplay between Rab35 and Arf6 controls cargo recycling to coordinate cell adhesion and migration. J Cell Sci 126:722–731. https://doi.org/10.1242/jcs.112375

    Article  CAS  PubMed  Google Scholar 

  55. Jackson TR, Brown FD, Nie Z, Miura K, Foroni L, Sun J, Hsu VW, Donaldson JG, Randazzo PA (2000) ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J Cell Biol 151:627–638. https://doi.org/10.1083/jcb.151.3.627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai J, Li J, Bos E, Porcionatto M, Premont RT, Bourgoin S, Peters PJ, Hsu VW (2004) ACAP1 promotes endocytic recycling by recognizing recycling sorting signals. Dev Cell 7:771–776. https://doi.org/10.1016/j.devcel.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  57. Takatsu H, Yoshino K, Toda K, Nakayama K (2002) GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors. Biochem J 365:369–378. https://doi.org/10.1042/BJ20020428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carroll RC, Morielli AD, Peralta EG (1995) Coincidence detection at the level of phospholipase C activation mediated by the m4 muscarinic acetylcholine receptor. Curr Biol 5:536–544. https://doi.org/10.1016/s0960-9822(95)00106-0

    Article  CAS  PubMed  Google Scholar 

  59. Esseltine JL, Ribeiro FM, Ferguson SS (2012) Rab8 modulates metabotropic glutamate receptor subtype 1 intracellular trafficking and signaling in a protein kinase C-dependent manner. J Neurosci 32:16933–16942a. https://doi.org/10.1523/JNEUROSCI.0625-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Richards MH, van Giersbergen PL (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol 114:1241–1249. https://doi.org/10.1111/j.1476-5381.1995.tb13339.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li C, Wei Z, Fan Y, Huang W, Su Y, Li H, Dong Z, Fukuda M, Khater M, Wu G (2017) The GTPase Rab43 controls the anterograde ER-Golgi trafficking and sorting of GPCRs. Cell Rep 21:1089–1101. https://doi.org/10.1016/j.celrep.2017.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dong C, Yang L, Zhang X, Gu H, Lam ML, Claycomb WC, Xia H, Wu G (2010) Rab8 interacts with distinct motifs in alpha2B- and beta2-adrenergic receptors and differentially modulates their transport. J Biol Chem 285:20369–20380. https://doi.org/10.1074/jbc.M109.081521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seachrist JL, Laporte SA, Dale LB, Babwah AV, Caron MG, Anborgh PH, Ferguson SS (2002) Rab5 association with the angiotensin II type 1A receptor promotes Rab5 GTP binding and vesicular fusion. J Biol Chem 277:679–685. https://doi.org/10.1074/jbc.M109022200

    Article  CAS  PubMed  Google Scholar 

  64. Chen CC, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD (2006) RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17:1286–1297. https://doi.org/10.1091/mbc.e05-08-0787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen S, Li L, Li J, Liu B, Zhu X, Zheng L, Zhang R, Xu T (2014) SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans. Proc Natl Acad Sci USA 111:15432–15437. https://doi.org/10.1073/pnas.1408327111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mulvaney EP, O’Meara F, Khan AR, O’Connell DJ, Kinsella BT (2017) Identification of alpha-helix 4 (alpha4) of Rab11a as a novel Rab11-binding domain (RBD): interaction of Rab11a with the prostacyclin receptor. Biochim Biophys Acta Mol Cell Res 1864:1819–1832. https://doi.org/10.1016/j.bbamcr.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  67. Tanna CE, Goss LB, Ludwig CG, Chen PW (2019) Arf GAPs as regulators of the actin cytoskeleton-an update. Int J Mol Sci. https://doi.org/10.3390/ijms20020442

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pfeffer SR (2017) Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell 28:712–715. https://doi.org/10.1091/mbc.E16-10-0737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Donaldson JG, Johnson DL, Dutta D (2016) Rab and Arf G proteins in endosomal trafficking and cell surface homeostasis. Small GTPases 7:247–251. https://doi.org/10.1080/21541248.2016.1212687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GR, Srivastava S, Baldwin SA, Prekeris R, Gould GW (2005) Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 24:3389–3399. https://doi.org/10.1038/sj.emboj.7600803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kiral FR, Kohrs FE, Jin EJ, Hiesinger PR (2018) Rab GTPases and membrane trafficking in neurodegeneration. Curr Biol 28:R471–R486. https://doi.org/10.1016/j.cub.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang X, Huang TY, Yancey J, Luo H, Zhang YW (2019) Role of Rab GTPases in Alzheimer’s disease. ACS Chem Neurosci 10:828–838. https://doi.org/10.1021/acschemneuro.8b00387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Victor Hsu (Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA), Dr. Emmanuel Boucrot (Institute of Structural and Molecular Biology, University College London, London, UK), and Dr. Eli Song(Institute of Biophysics, Chinese Academy of Sciences, Beijing, China) for kindly donating material. This work was supported by the Major Research Plan of the National Natural Science Foundation of China (91954107), and the National Natural Science Foundation of China (32270739, 31571468) to RZ.

Funding

This work was supported by the Major Research Plan of the National Natural Science Foundation of China (91954107), and the National Natural Science Foundation of China (32270739, 31571468) to RZ.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RZ; Investigation, RX, MW, XS, SM, and LZ; Methodology, RX, PY, MW, XS, and RZ; Formal analysis, RX, and MW; Funding acquisition, RZ; Project administration, PY, RZ; Original draft, RZ; Writing and review and editing, RX, PY, MW, and RZ.

Corresponding authors

Correspondence to Ping Yi or Rongying Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3596 KB)

Supplementary file2 (MP4 70328 KB)

Supplementary file3 (MP4 74340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Wan, M., Shi, X. et al. A Rab10–ACAP1–Arf6 GTPases cascade modulates M4 muscarinic acetylcholine receptor trafficking and signaling. Cell. Mol. Life Sci. 80, 87 (2023). https://doi.org/10.1007/s00018-023-04722-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04722-x

Keywords

Navigation