Skip to main content

Advertisement

Log in

Identification of the common neurobiological process disturbed in genetic and non-genetic models for autism spectrum disorders

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASD) are neurodevelopmental disorders. Genetic factors, along with non-genetic triggers, have been shown to play a causative role. Despite the various causes, a triad of common symptoms defines individuals with ASD; pervasive social impairments, impaired social communication, and repeated sensory-motor behaviors. Therefore, it can be hypothesized that different genetic and environmental factors converge on a single hypothetical neurobiological process that determines these behaviors. However, the cellular and subcellular signature of this process is, so far, not well understood. Here, we performed a comparative study using “omics” approaches to identify altered proteins and, thereby, biological processes affected in ASD. In this study, we mined publicly available repositories for genetic mouse model data sets, identifying six that were suitable, and compared them with in-house derived proteomics data from prenatal zinc (Zn)-deficient mice, a non-genetic mouse model with ASD-like behavior. Findings derived from these comparisons were further validated using in vitro neuronal cell culture models for ASD. We could show that a protein network, centered on VAMP2, STX1A, RAB3A, CPLX2, and AKAP5, is a key convergence point mediating synaptic vesicle release and recycling, a process affected across all analyzed models. Moreover, we demonstrated that Zn availability has predictable functional effects on synaptic vesicle release in line with the alteration of proteins in this network. In addition, drugs that target kinases, reported to regulate key proteins in this network, similarly impacted the proteins’ levels and distribution. We conclude that altered synaptic stability and plasticity through abnormal synaptic vesicle dynamics and function may be the common neurobiological denominator of the shared behavioral abnormalities in ASD and, therefore, a prime drug target for developing therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets and analysis pipelines generated for this study are available from the corresponding author upon reasonable request.

References

  1. American Psychiatric Association (2013), American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association. p 947

  2. Nakanishi M, Anderson MP, Takumi T (2019) Recent genetic and functional insights in autism spectrum disorder. Curr Opin Neurol 32(4):627–634

    Article  Google Scholar 

  3. Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R et al (2020) An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int J Mol Sci 21(21):1–22

    Article  Google Scholar 

  4. Grabrucker AM (2013) Environmental factors in autism. Front Psychiatry 18(3):118. https://doi.org/10.3389/fpsyt.2012.00118

    Article  Google Scholar 

  5. Sierra-Arregui T, Llorente J, Giménez Minguez P, Tønnesen J, Peñagarikano O (2020) Neurobiological mechanisms of autism spectrum disorder and epilepsy, insights from animal models. Neuroscience 445:69–82

    Article  CAS  Google Scholar 

  6. Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S (2020) What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 109:29–53

    Article  Google Scholar 

  7. Won H, Mah W, Kim E (2013) Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 5(6):19. https://doi.org/10.3389/fnmol.2013.00019 (PMID: 23935565; PMCID: PMC3733014)

    Article  Google Scholar 

  8. Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M et al (2012) Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 7(7):e40914. https://doi.org/10.1371/journal.pone.0040914

    Article  CAS  Google Scholar 

  9. Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S et al (2006) En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 1116(1):166–176. https://doi.org/10.1016/j.brainres.2006.07.086

    Article  CAS  Google Scholar 

  10. Horev G, Ellegood J, Lerch JP, Son YEE, Muthuswamy L, Vogel H et al (2011) Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1114042108

    Article  Google Scholar 

  11. Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G et al (2014) Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep 7(4):1079–92. https://doi.org/10.1016/j.celrep.2014.03.036

    Article  CAS  Google Scholar 

  12. Jiang Y, Ehlers M (2013) Modeling Autism by SHANK gene mutations in mice. Neuron 78(1):8–27. https://doi.org/10.1016/j.neuron.2013.03.016

    Article  CAS  Google Scholar 

  13. Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A et al (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486(7402):256–260. https://doi.org/10.1038/nature11015

    Article  CAS  Google Scholar 

  14. Kazdoba TM, Leach PT, Silverman JL, Crawley JN (2014) Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 3(4):118–133. https://doi.org/10.5582/irdr.2014.01024

    Article  Google Scholar 

  15. Liu J, Nyholt DR, Magnussen P, Parano E, Pavone P, Geschwind D et al (2001) A genomewide screen for autism susceptibility loci the autism genetic resource exchange consortium. Am J Hum Genet 69:327–340. https://doi.org/10.1086/321980

    Article  CAS  Google Scholar 

  16. Loke YJ, Hannan AJ, Craig JM (2015) The role of epigenetic change in autism spectrum disorders. Front Neurol 6:107. https://doi.org/10.3389/fneur.2015.00107

    Article  Google Scholar 

  17. Rein B, Yan Z (2020) 16p112 Copy number variations and neurodevelopmental disorders. Trends Neurosci 43(11):886–901. https://doi.org/10.1016/j.tins.2020.09.001

    Article  CAS  Google Scholar 

  18. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S et al (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004580

    Article  Google Scholar 

  19. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM (2011) Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21(10):594–603. https://doi.org/10.1016/j.tcb.2011.07.003

    Article  CAS  Google Scholar 

  20. Schmeisser MJ (2015) Translational neurobiology in Shank mutant mice—model systems for neuropsychiatric disorders. Ann Anat 200:115–117. https://doi.org/10.1016/j.aanat.2015.03.006

    Article  Google Scholar 

  21. Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, Stackhouse T, Riley C, Peacock G, Sherman SL, Brown WT, Berry-Kravis E (2017) Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics 139(Suppl 3):S194–S206. https://doi.org/10.1542/peds.2016-1159F

    Article  Google Scholar 

  22. Bernardet M, Crusio WE (2006) Fmr1 KO mice as a possible model of autistic features. Sci World J 6:1164–1176. https://doi.org/10.1100/tsw.2006.220

    Article  CAS  Google Scholar 

  23. Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H et al (2020) A systematic review of the valproic-acid-induced rodent model of autism. Dev Neurosci 42(1):12–48. https://doi.org/10.1159/000509109

    Article  CAS  Google Scholar 

  24. Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81(5):391–401. https://doi.org/10.1016/j.biopsych.2016.10.020

    Article  CAS  Google Scholar 

  25. Grabrucker S, Boeckers TM, Grabrucker AM (2016) Gender dependent evaluation of autism like behavior in mice exposed to prenatal zinc deficiency. Front Behav Neurosci 10:37. https://doi.org/10.3389/fnbeh.2016.00037

    Article  CAS  Google Scholar 

  26. Grabrucker S, Jannetti L, Eckert M, Gaub S, Chhabra R, Pfaender S et al (2014) Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain 137(1):137–152. https://doi.org/10.1093/brain/awt303

    Article  Google Scholar 

  27. Grabrucker S, Haderspeck JC, Sauer AK, Kittelberger N, Asoglu H, Abaei A et al (2018) Brain lateralization in mice is associated with zinc signaling and altered in prenatal zinc deficient mice that display features of autism spectrum disorder. Front Mol Neurosci 10:450. https://doi.org/10.3389/fnmol.2017.00450

    Article  CAS  Google Scholar 

  28. Cezar LC, Kirsten TB, da Fonseca CCN, de Lima APN, Bernardi MM, Felicio LF (2018) Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog Neuro-Psychopharmacology Biol Psychiatry 84:173–180. https://doi.org/10.1016/j.pnpbp.2018.02.008

    Article  CAS  Google Scholar 

  29. Grabrucker AM (2020) Biometals in Autism Spectrum. Academic Press/Elsevier, Amsterdam. https://doi.org/10.1016/C2019-0-01808-0

    Book  Google Scholar 

  30. Sgadò P, Provenzano G, Dassi E, Adami V, Zunino G, Genovesi S et al (2013) Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders. Mol Autism 4(1):51. https://doi.org/10.1186/2040-2392-4-51

    Article  CAS  Google Scholar 

  31. Lim CS, Kim H, Yu NK, Kang SJ, Kim TH, Ko HG et al (2017) Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. Neuropharmacology 112:104–112. https://doi.org/10.1016/j.neuropharm.2016.08.016

    Article  CAS  Google Scholar 

  32. Reim D, Distler U, Halbedl S, Verpelli C, Sala C, Bockmann J et al (2017) Proteomic analysis of post-synaptic density fractions from Shank3 mutant mice reveals brain region specific changes relevant to autism spectrum disorder. Front Mol Neurosci 10:26. https://doi.org/10.3389/fnmol.2017.00026

    Article  CAS  Google Scholar 

  33. Prilutsky D, Kho AT, Palmer NP, Bhakar AL, Smedemark-Margulies N, Kong SW et al (2015) Gene expression analysis in Fmr1KO mice identifies an immunological signature in brain tissue and mGluR5-related signaling in primary neuronal cultures. Mol Autism 6:66

    Article  Google Scholar 

  34. Lanz TA, Guilmette E, Gosink MM, Fischer JE, Fitzgerald LW, Stephenson DT et al (2013) Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action. Mol Autism 4(1):45. https://doi.org/10.1186/2040-2392-4-45

    Article  CAS  Google Scholar 

  35. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  Google Scholar 

  36. Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends Genet 29(10):569–574. https://doi.org/10.1016/j.tig.2013.05.010

    Article  CAS  Google Scholar 

  37. Smith TC, Frank E (2016) Introducing machine learning concepts with WEKA. In: Mathé E, Davis S (eds) Statistical genomics methods in molecular biology, vol 1418. Humana Press, New York. https://doi.org/10.1007/978-1-4939-3578-9_17

    Chapter  Google Scholar 

  38. Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K (2016) Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. J Machine Learn Res 17:1–5 Available from: http://automl.org/autoweka

  39. Maere S, Heymans K, Kuiper M (2005) BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological Networks. Bioinformatics 21(16):3448–3449. https://doi.org/10.1093/bioinformatics/bti551

    Article  CAS  Google Scholar 

  40. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the panther classification system. Nat Protoc 8(8):1551–1566. https://doi.org/10.1038/nprot.2013.092

    Article  CAS  Google Scholar 

  41. Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5(11):e13984. https://doi.org/10.1371/journal.pone.0013984

    Article  CAS  Google Scholar 

  42. Frederickson CJ, Suh SW, Koh JY, Cha YK, Thompson RB, LaBuda CJ, Balaji RV, Cuajungco MP (2002) Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro. J Histochem Cytochem 50(12):1659–1662. https://doi.org/10.1177/002215540205001210

    Article  CAS  Google Scholar 

  43. Zukin S, Jover T, Yokota H, Calderone A, Simionescu M, Lau G (2004) Chapter 42—molecular and cellular mechanisms of ischemia-induced neuronal death. In: Mohr JP, Choi DW, Grotta JC, Weir B, Wolf PA (eds) Stroke, 4th edn. Churchill Livingstone, London, pp 829–854

    Chapter  Google Scholar 

  44. Takeda A, Minami A, Seki Y, Oku N (2004) Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus. J Neurosci Res 75(2):225–229. https://doi.org/10.1002/jnr.10846

    Article  CAS  Google Scholar 

  45. Frederickson CJ, Giblin LJ, Balaji RV, Rengarajan B, Masalha R, Frederickson CJ, Zeng Y, Lopez EV, Koh JY, Chorin U, Besser L, Hershfinkel M, Li Y, Thompson RB, Krezel A (2006) Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration. J Neurosci Methods 154(1–2):19–29. https://doi.org/10.1016/j.jneumeth.2005.11.014

    Article  CAS  Google Scholar 

  46. Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, Libert S, Maret W, Parviz M, Frederickson CJ, Thompson RB (2010) Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med (Maywood) 235(6):741–750. https://doi.org/10.1258/ebm.2010.009258

    Article  CAS  Google Scholar 

  47. Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26(1):187–196. https://doi.org/10.1016/s0896-6273(00)81149-6

    Article  CAS  Google Scholar 

  48. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL et al (2011) Improved structure, function and compatibility for cellprofiler: Modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180. https://doi.org/10.1093/bioinformatics/btr095

    Article  CAS  Google Scholar 

  49. Nieland TJF, Logan DJ, Saulnier J, Lam D, Johnson C, Root DE et al (2014) High content image analysis identifies novel regulators of synaptogenesis in a high-throughput RNAi screen of primary neurons. PLoS ONE 9(3):e91744. https://doi.org/10.1371/journal.pone.0091744

    Article  CAS  Google Scholar 

  50. Augustin H, McGourty K, Steinert JR, Cochemé HM, Adcott J, Cabecinha M et al (2017) Myostatin-like proteins regulate synaptic function and neuronal morphology. Dev 144(13):2445–2455. https://doi.org/10.1242/dev.152975

    Article  CAS  Google Scholar 

  51. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328. https://doi.org/10.1038/ng1985

    Article  CAS  Google Scholar 

  52. Bölte S, Girdler S, Marschik PB (2019) The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 76(7):1275–1297. https://doi.org/10.1007/s00018-018-2988-4

    Article  CAS  Google Scholar 

  53. Geschwind DH (2011) Genetics of autism spectrum disorders. Trends Cogn Sci 15(9):409–416. https://doi.org/10.1016/j.tics.2011.07.003

    Article  Google Scholar 

  54. Schaaf CP, Betancur C, Yuen RKC, Parr JR, Skuse DH, Gallagher L et al (2020) A framework for an evidence-based gene list relevant to autism spectrum disorder. Nat Rev Genet 21(6):367–376. https://doi.org/10.1038/s41576-020-0231-2

    Article  CAS  Google Scholar 

  55. Yoo H (2015) Genetics of autism spectrum disorder: current status and possible clinical applications. Exp Neurobiol 24(4):257–272. https://doi.org/10.5607/en.2015.24.4.257

    Article  Google Scholar 

  56. Jęśko H, Cieślik M, Gromadzka G, Adamczyk A (2020) Dysfunctional proteins in neuropsychiatric disorders: from neurodegeneration to autism spectrum disorders. Neurochem Int 141:104853. https://doi.org/10.1016/j.neuint.2020.104853

    Article  CAS  Google Scholar 

  57. Kern JK, Geier DA, Sykes LK, Geier MR (2013) Evidence of neurodegeneration in autism spectrum disorder. Transl Neurodegener. https://doi.org/10.1186/2047-9158-2-17

    Article  Google Scholar 

  58. Kern JK, Geier DA, King PG, Sykes LK, Mehta JA, Geier MR (2015) Shared brain connectivity issues, symptoms, and comorbidities in autism spectrum disorder, attention deficit/hyperactivity disorder, and tourette syndrome. Brain Connect 5(6):321–335. https://doi.org/10.1089/brain.2014.0324

    Article  Google Scholar 

  59. Richter S, Gorny X, Marco-Pallares J, Krämer UM, Machts J, Barman A et al (2011) A potential role for a genetic variation of AKAP5 in human aggression and anger control. Front Hum Neurosci 5:175. https://doi.org/10.3389/fnhum.2011.00175

    Article  CAS  Google Scholar 

  60. Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M (2016) SNAP-25, a known presynaptic protein with emerging postsynaptic functions. Front Synaptic Neurosci 8:7. https://doi.org/10.3389/fnsyn.2016.00007

    Article  CAS  Google Scholar 

  61. Weisenhaus M, Allen ML, Yang L, Lu Y, Nichols CB, Su T et al (2017) Mutations in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological and behavioral phenotypes in mice. PLoS One 5(4):e10325. https://doi.org/10.1371/journal.pone.0010325

    Article  CAS  Google Scholar 

  62. Ribrault C, Reingruber J, Petković M, Galli T, Ziv NE, Holcman D, Triller A (2011) Syntaxin1A lateral diffusion reveals transient and local SNARE interactions. J Neurosci 31(48):17590–17602. https://doi.org/10.1523/JNEUROSCI.4065-11.2011

    Article  CAS  Google Scholar 

  63. Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M, Nienhaus GU, Garner CC, Bowie JU, Kreutz MR, Gundelfinger ED, Boeckers TM (2011) Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J 30(3):569–581. https://doi.org/10.1038/emboj.2010.336

    Article  CAS  Google Scholar 

  64. Park AJ, Havekes R, Choi JHK, Luczak V, Nie T, Huang T et al (2014) A presynaptic role for PKA in synaptic tagging and memory. Neurobiol Learn Mem 114:101–112. https://doi.org/10.1016/j.nlm.2014.05.005

    Article  CAS  Google Scholar 

  65. Horev G, Ellegood J, Lerch JP, Son YEE, Muthuswamy L, Vogel H et al (2011) Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA 108(41):17076–81. https://doi.org/10.1073/pnas.1114042108

    Article  Google Scholar 

  66. Nakaya HI (2021) Bioinformatics. Exon Publications, Brisbane. https://doi.org/10.36255/exonpublications.bioinformatics.2021

    Book  Google Scholar 

  67. Misra BB, Langefeld C, Olivier M, Cox LA (2019) Integrated omics: tools, advances and future approaches. J Mol Endocrinol 62(1):R21-45. https://doi.org/10.1530/JME-18-0055

    Article  CAS  Google Scholar 

  68. Parmeggiani A (2014) Gastrointestinal disorders and autism. In: Patel V, Preedy V, Martin C (eds) Comprehensive Guide to Autism. Springer, New York. https://doi.org/10.1007/978-1-4614-4788-7_122

    Chapter  Google Scholar 

  69. Lee M, Krishnamurthy J, Susi A, Sullivan C, Gorman GH, Hisle-Gorman E et al (2018) Association of autism spectrum disorders and inflammatory bowel disease. J Autism Dev Disord 48(5):1523–1529. https://doi.org/10.1007/s10803-017-3409-5

    Article  Google Scholar 

  70. De Theije CGM, Koelink PJ, Korte-Bouws GAH, Lopes da Silva S, Korte SM, Olivier B et al (2014) Intestinal inflammation in a murine model of autism spectrum disorders. Brain Behav Immun 37:240–247. https://doi.org/10.1016/j.bbi.2013.12.004

    Article  CAS  Google Scholar 

  71. White JF (2003) Intestinal pathophysiology in autism. Exp Biol Med 228(6):639–649. https://doi.org/10.1177/153537020322800601

    Article  CAS  Google Scholar 

  72. Poelmans G, Franke B, Pauls DL, Glennon JC, Buitelaar JK (2013) AKAPs integrate genetic findings for autism spectrum disorders. Transl Psychiatry 3(6):e270. https://doi.org/10.1038/tp.2013.48

    Article  CAS  Google Scholar 

  73. Grabrucker A, Vaida B, Bockmann J, Boeckers TM (2009) Synaptogenesis of hippocampal neurons in primary cell culture. Cell Tissue Res 338(3):333–341. https://doi.org/10.1007/s00441-009-0881-z

    Article  Google Scholar 

  74. Grabrucker AM, Rowan M, Garner CC (2011) Brain-delivery of zinc-ions as potential treatment for neurological diseases: mini review. Drug Deliv Lett 1(1):13–23. https://doi.org/10.2174/2210303111101010013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Autism Research Institute funds AMG. The authors would like to acknowledge networking support by the COST Action TD1304. SM and SEH are funded by the Irish Research Council (IRC) postgraduate grants; GOIPG/2019/3693 and ESPG/2020/88, respectively.

Funding

The Autism Research Institute funds AMG. SM and SEH are funded by the Irish Research Council (IRC) postgraduate grants; GOIPG/2019/3693 and ESPG/2020/88, respectively.

Author information

Authors and Affiliations

Authors

Contributions

SM, AKS, AMG, and KMcG contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SM, AKS, MF, AMG, and KMcG. AMG and KMcG wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Andreas M. Grabrucker or Kieran McGourty.

Ethics declarations

Conflict of interest

SM, AKS, SEH, MF, AMG, and KMcG declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

Animal experiments were performed in compliance with guidelines from the Federal Government of Germany for the welfare of experimental animals and approved by the Regierungspräsidium Tübingen and the local ethics committee (Ulm-University) ID:Number:1239 during AMG’s previous appointment at Ulm University.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4617_MOESM1_ESM.tif

Supplementary file1 Immunoblot quantification of AKAP5 A AKAP5 protein immunoblot analysis using Control and PZD mouse hippocampal brain lysates. Data are normalized to the housekeeping protein ACTIN and shown as mean ± SEM. A significantly higher AKAP5 protein expression was found in PZD brain lysates (t test; p ≤ 0.001). B Exemplary WB bands. (TIF 17729 KB)

18_2022_4617_MOESM2_ESM.tif

Supplementary file2 Detection and quantification of neuronal synapses and pre-synaptic assemblies Rat hippocampal neurons were grown either in full growth media (CTL) for 14 DIV or changed into growth media additionally supplemented with 50 µM CaEDTA for 14 DIV (CaEDTA) prior to measurement by fluorescent microscopy and downstream image analysis. A (i) Microscopy image quantification of the median number of synapses (marked by co-localizing homer and synaptophysin punctae) or pre-synaptic assemblies (marked by AKAP5 and SNAP25 punctae) per neuronal cell in CaEDTA conditions normalized to control conditions. (ii) Microscopy image quantification of the median number of punctae of homer, synatophysin, AKAP5 or SNAP25 per neuronal cell in CaEDTA conditions normalized to control conditions. B Proportional fluorescence intensity density plot analysis in synapses (Homer&Synatophysin) and pre-synaptic assemblies (AKAP5&SNAP25) in neurons cultured under control conditions or supplemented with CaEDTA C) Quantification of indicated proteins through fluorescence intensity analysis in synapses (Homer&Synatophysin) and pre-synaptic assemblies (AKAP5&SNAP25) in neurons cultured in control or CaEDTA conditions. A minimum of 80,000 synapse/pre-synaptic assemblies per condition per experiment were detected in control conditions and a minimum of 50,000 in CaEDTA conditions. Data were aggregated across experimental repeats (n = 3) and represent the geometric mean of each marker within a synapse (Homer&Synatophysin) /pre-synaptic (AKAP5&SNAP25) assembly identified through image analysis. Data were analysed by student’s t tests comparisons of two independent groups: *P<0.05; **P<0.01; ***P<0.001; n.s. not significant (TIF 54577 KB)

Supplementary file3 (XLSX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malijauskaite, S., Sauer, A.K., Hickey, S.E. et al. Identification of the common neurobiological process disturbed in genetic and non-genetic models for autism spectrum disorders. Cell. Mol. Life Sci. 79, 589 (2022). https://doi.org/10.1007/s00018-022-04617-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04617-3

Keywords

Navigation