Skip to main content

Advertisement

Log in

BMI1 promotes cholangiocarcinoma progression and correlates with antitumor immunity in an exosome-dependent manner

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background

Cholangiocarcinoma (CCA) is a class of malignant tumors originating from bile duct epithelial cells. Due to difficult early diagnosis and limited treatment, the prognosis of CCA is extremely poor. BMI1 is dysregulated in many human malignancies. However, the prognostic significance and oncogenic role of BMI1 in cholangiocarcinoma (CCA) are not well elucidated.

Methods

In the present study, we investigated its clinical importance and the potential mechanisms in the progression of CCA. We detected BMI1 expression in a large CCA cohort. We demonstrated that BMI1 was substantially upregulated in CCA tissues and was identified as an independent prognostic biomarker of CCA. Moreover, overexpression of BMI1 promoted CCA proliferation, migration, and invasion. And BMI1 knockdown could inhibit proliferation and metastases of CCA in vitro and in vitro/vivo validation. Interestingly, we found that CCA-derived exosomes contain BMI1 proteins, which can transfer BMI1 between CCA cells. The unique BMI1-containing exosomes promote CCA proliferation and metastasis through autocrine/paracrine mechanisms. In addition, we demonstrated that BMI1 inhibits CD8+T cell-recruiting chemokines by promoting repressive H2A ubiquitination in CCA cells.

Conclusions

BMI1 is an unfavorable prognostic biomarker of CCA. Our data depict a novel function of BMI1 in CCA tumorigenesis and metastasis mediated by exosomes. Besides, BMI1 inhibition may augment immune checkpoint blockade to inhibit tumor progression by activating cell-intrinsic immunity of CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CCA:

Cholangiocarcinoma

iCCA:

Intrahepatic cholangiocarcinoma

pCCA:

Perihilar cholangiocarcinoma

dCCA:

Distal cholangiocarcinoma

TMA:

Tissue microarray

IHC:

Immunohistochemistry

qRT-PCR:

Quantitative real-time polymerase chain reaction

WB:

Western blot

IHC:

Immunohistochemistry

ELISA:

Enzyme-linked immunosorbent assays

ChIP-qPCR:

Chromatin immunoprecipitation-qPCR

OS:

Overall survival rate

DMEM:

Dulbecco's Modified Eagle Medium

FBS:

Fetal bovine serum

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

PMSF:

Phenylmethanesulfonyl fluoride

PBS:

Phosphate buffer saline

CCK-8:

Cell counting kit-8

DMSO:

Dimethyl sulfoxide

CM:

Conditioned medium

BMI1:

B-cell-specific Moloney leukemia virus insertion site 1

E-cad:

E-cadherin

N-cad:

N-cadherin

EMT:

Epithelial-mesenchymal transition

MVBs:

Multivesicular bodies

shRNA:

Short hairpin RNA

TNM:

Tumor–node–metastasis

rhBMI1:

Recombinant human BMI1

exoBMI1:

Exosomal BMI1

CD8A:

CD8 antigen

CCL5:

C–C motif chemokine ligand 5

CXCL9:

C-X-C motif chemokine ligand 9

PD1:

Programmed cell death protein 1

ICB:

Immune checkpoint blocking

ICI:

Immune checkpoint inhibitors

References

  1. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ (2018) Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 15(2):95–111

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Ren G, Li K, Liu Z, Wang Y, Chen T, Mu W, Yang X, Li X, Shi A et al (2021) The Smad4-MYO18A-PP1A complex regulates beta-catenin phosphorylation and pemigatinib resistance by inhibiting PAK1 in cholangiocarcinoma. Cell Death Differ 29:818–831

    Article  PubMed  Google Scholar 

  3. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C et al (2020) Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 17(9):557–588

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen T, Li K, Liu Z, Liu J, Wang Y, Sun R, Li Z, Qiu B, Zhang X, Ren G et al (2021) WDR5 facilitates EMT and metastasis of CCA by increasing HIF-1alpha accumulation in Myc-dependent and independent pathways. Mol Ther 29(6):2134–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y, Zhang Z (2021) HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. J Exp Clin Cancer Res 40(1):86

    Article  PubMed  PubMed Central  Google Scholar 

  6. Florio AA, Ferlay J, Znaor A, Ruggieri D, Alvarez CS, Laversanne M, Bray F, McGlynn KA, Petrick JL (2020) Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012. Cancer 126(11):2666–2678

    Article  PubMed  Google Scholar 

  7. Valle JW, Kelley RK, Nervi B, Oh DY, Zhu AX (2021) Biliary tract cancer. Lancet 397(10272):428–444

    Article  CAS  PubMed  Google Scholar 

  8. Blechacz B (2017) Cholangiocarcinoma: current knowledge and new developments. Gut Liver 11(1):13–26

    Article  PubMed  Google Scholar 

  9. Razumilava N, Gores GJ (2014) Cholangiocarcinoma. Lancet 383(9935):2168–2179

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu YF, Liu ZL, Pan C, Yang XQ, Ning SL, Liu HD, Guo S, Yu JM, Zhang ZL (2019) HMGB1 correlates with angiogenesis and poor prognosis of perihilar cholangiocarcinoma via elevating VEGFR2 of vessel endothelium. Oncogene 38(6):868–880

    Article  CAS  PubMed  Google Scholar 

  11. Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9(11):773–784

    Article  CAS  PubMed  Google Scholar 

  12. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6):845–854

    Article  CAS  PubMed  Google Scholar 

  13. Haupt Y, Bath ML, Harris AW, Adams JM (1993) bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8(11):3161–3164

    CAS  PubMed  Google Scholar 

  14. Zhang X, Wang CX, Zhu CB, Zhang J, Kan SF, Du LT, Li W, Wang LL, Wang S (2010) Overexpression of Bmi-1 in uterine cervical cancer: correlation with clinicopathology and prognosis. Int J Gynecol Cancer 20(9):1597–1603

    PubMed  Google Scholar 

  15. Song LB, Zeng MS, Liao WT, Zhang L, Mo HY, Liu WL, Shao JY, Wu QL, Li MZ, Xia YF et al (2006) Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res 66(12):6225–6232

    Article  CAS  PubMed  Google Scholar 

  16. Kim JH, Yoon SY, Kim CN, Joo JH, Moon SK, Choe IS, Choe YK, Kim JW (2004) The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett 203(2):217–224

    Article  CAS  PubMed  Google Scholar 

  17. Dey A, Mustafi SB, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R (2016) Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy 12(4):659–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye K, Chen QW, Sun YF, Lin JA, Xu JH (2018) Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-kappaB signaling. J Cell Biochem 119(2):1922–1930

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki M, Yamaguchi J, Ikeda H, Itatsu K, Nakanuma Y (2009) Polycomb group protein Bmi1 is overexpressed and essential in anchorage-independent colony formation, cell proliferation and repression of cellular senescence in cholangiocarcinoma: tissue and culture studies. Hum Pathol 40(12):1723–1730

    Article  CAS  PubMed  Google Scholar 

  20. Fan L, Xu C, Wang C, Tao J, Ho C, Jiang L, Gui B, Huang S, Evert M, Calvisi DF et al (2012) Bmi1 is required for hepatic progenitor cell expansion and liver tumor development. PLoS ONE 7(9):e46472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Correnti M, Cappon A, Pastore M, Piombanti B, Lori G, Oliveira D, Munoz-Garrido P, Lewinska M, Andersen JB, Coulouarn C et al (2022) The protease-inhibitor SerpinB3 as a critical modulator of the stem-like subset in human cholangiocarcinoma. Liver Int 42(1):233–248

    Article  CAS  PubMed  Google Scholar 

  22. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581

    Article  CAS  PubMed  Google Scholar 

  23. Ela S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Article  Google Scholar 

  24. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  25. McAndrews KM, Kalluri R (2019) Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer 18(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Yang X, Zhang Y, Liu X, Zheng G, Yang Y, Wang L, Du L, Wang C (2015) Direct serum assay for cell-free bmi-1 mRNA and its potential diagnostic and prognostic value for colorectal cancer. Clin Cancer Res Off J Am Assoc Cancer Res 21(5):1225–1233

    Article  Google Scholar 

  28. Zhang X, Wang C, Wang L, Du L, Wang S, Zheng G, Li W, Zhuang X, Zhang X, Dong Z (2012) Detection of circulating Bmi-1 mRNA in plasma and its potential diagnostic and prognostic value for uterine cervical cancer. Int J Cancer 131(1):165–172

    Article  CAS  PubMed  Google Scholar 

  29. Sabbatino F, Villani V, Yearley JH, Deshpande V, Cai L, Konstantinidis IT, Moon C, Nota S, Wang Y, Al-Sukaini A et al (2016) PD-L1 and HLA Class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin Cancer Res 22(2):470–478

    Article  CAS  PubMed  Google Scholar 

  30. Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, Pavelko KD, Li Y, O’Brien D, Wang C et al (2020) Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin Investig 130(10):5380–5396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  CAS  PubMed  Google Scholar 

  32. Qin Y, Vasilatos SN, Chen L, Wu H, Cao Z, Fu Y, Huang M, Vlad AM, Lu B, Oesterreich S et al (2019) Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene 38(3):390–405

    Article  CAS  PubMed  Google Scholar 

  33. Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, Lanitis E, Duraiswamy J, Tanyi JL, Benencia F et al (2019) Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35(6):885-900 e810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pascual-Garcia M, Bonfill-Teixidor E, Planas-Rigol E, Rubio-Perez C, Iurlaro R, Arias A, Cuartas I, Sala-Hojman A, Escudero L, Martinez-Ricarte F et al (2019) LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8(+) T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun 10(1):2416

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M, Urakawa S, Iwagami Y, Tomimaru Y, Akita H et al (2020) Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci 111(2):323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou G, Sprengers D, Mancham S, Erkens R, Boor PPC, van Beek AA, Doukas M, Noordam L, Campos Carrascosa L, de Ruiter V et al (2019) Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules. J Hepatol 71(4):753–762

    Article  PubMed  Google Scholar 

  37. Sadeghlar F, Vogt A, Mohr RU, Mahn R, van Beekum K, Kornek M, Weismuller TJ, Branchi V, Matthaei H, Toma M et al (2021) Induction of cytotoxic effector cells towards cholangiocellular, pancreatic, and colorectal tumor cells by activation of the immune checkpoint CD40/CD40L on dendritic cells. Cancer Immunol Immunother 70(5):1451–1464

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Sun R, Zhang X, Qiu B, Chen T, Li Z, Xu Y, Zhang Z (2019) Transcription factor 7 promotes the progression of perihilar cholangiocarcinoma by inducing the transcription of c-Myc and FOS-like antigen 1. EBioMedicine 45:181–191

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jia L, Zhang W, Wang CY (2020) BMI1 inhibition eliminates residual cancer stem cells after PD1 blockade and activates antitumor immunity to prevent metastasis and relapse. Cell Stem Cell 27(2):238-253 e236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hezel AF, Deshpande V, Zhu AX (2010) Genetics of biliary tract cancers and emerging targeted therapies. J Clin Oncol 28(21):3531–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397(6715):164–168

    Article  CAS  PubMed  Google Scholar 

  42. Guo J, Deng N, Xu Y, Li L, Kuang D, Li M, Li X, Xu Z, Xiang M, Xu C (2021) Bmi1 drives the formation and development of intrahepatic cholangiocarcinoma independent of Ink4A/Arf repression. Pharmacol Res 164:105365

    Article  CAS  PubMed  Google Scholar 

  43. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546(7659):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martins VR, Dias MS, Hainaut P (2013) Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol 25(1):66–75

    Article  CAS  PubMed  Google Scholar 

  45. Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, Liu Y, Zhang Y (2018) Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 17(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu X, Liang Y, Li X, Ouyang K, Wang M, Cao T, Li W, Liu J, Xiong J, Li B et al (2021) Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials 269:120539

    Article  CAS  PubMed  Google Scholar 

  47. Nieland L, Morsett LM, Broekman MLD, Breakefield XO, Abels ER (2021) Extracellular vesicle-mediated bilateral communication between glioblastoma and astrocytes. Trends Neurosci 44(3):215–226

    Article  CAS  PubMed  Google Scholar 

  48. Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L et al (2019) Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 9(5):646–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blackledge NP, Rose NR, Klose RJ (2015) Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 16(11):643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Infante R, Bedard L, Shapiro G, Bauer TM, Prawira A, Laskin O et al (2017) Phase 1 results of PTC596, a novel small molecule targeting cancer stem cells (CSCs) by reducing levels of BMI1 protein. J Clin Oncol 35(15):2574–2574

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaoqing Yang from the Department of Pathology, the Qianfoshan Hospital of Shandong University, for evaluating the IHC results and distinguish different cell types in the HE staining.

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 81900728, 82072676, 82172791), Shandong Province Natural Science Foundation (Grant nos. ZR2019MH008, ZR2020MH238), Shandong Province Key R&D Program (Major Scientific Innovation Projects, 2021CXGC011105), Shandong Medical and Health Technology Development Project (Grant no. 2018WSB20002), Clinical Research Foundation of Shandong University (Grant no. 2020SDUCRCA018), Key Research and Development Program of Shandong Province (Grant no. 2019GSF108254). The funders had no role in study design, data collection, analysis, interpretation, and manuscript writing.

Author information

Authors and Affiliations

Authors

Contributions

ZL, CH, LJ, YW, and JL performed the experiments. ZL designed the experiments and wrote the paper. ZL, LZ, KL, and BQ collected the clinical samples. XL, YW, WM, TC, and AS perform the follow-up. ZL, CH, and LZ participated in data analysis and interpretation. XZ and YX designed the study, YX and ZZ contributed to study supervision and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zongli Zhang or Yunfei Xu.

Ethics declarations

Conflict of interest

There are no relevant conflicts of interest.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of Qilu Hospital of Shandong University, and written informed consent was obtained from each patient. The Laboratory Animal Care and Use Committees of the hospital approved all experimental procedures.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1607 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hu, C., Zheng, L. et al. BMI1 promotes cholangiocarcinoma progression and correlates with antitumor immunity in an exosome-dependent manner. Cell. Mol. Life Sci. 79, 469 (2022). https://doi.org/10.1007/s00018-022-04500-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04500-1

Keywords

Navigation