Skip to main content
Log in

Persistent Escherichia coli infection in renal tubular cells enhances calcium oxalate crystal–cell adhesion by inducing ezrin translocation to apical membranes via Rho/ROCK pathway

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent evidence has suggested that recurrent urinary tract infection (UTI) can cause not only infection stones but also metabolic stones (e.g., those containing calcium oxalate monohydrate or COM). However, precise mechanisms underlying UTI-induced metabolic stones remained unknown. In this study, Escherichia coli, the most common bacterium found in recurrent UTI was used to establish the in vitro model for persistent infection of renal epithelial cells. The promoting effects of persistent E. coli infection on kidney stone formation were validated by COM crystal–cell adhesion assay, followed by immunofluorescence study for changes in surface expression of the known COM crystal receptors. Among the five receptors examined, only ezrin had significantly increased level on the surface of persistently infected cells without change in its total level. Such translocation of ezrin to apical membranes was confirmed by Western blotting of apical membrane and cytosolic fractions and confocal microscopic examination. Additionally, persistent infection increased phosphorylation (Thr567) of ezrin. However, all of these changes induced by persistent E. coli infection were significantly inhibited by small-interfering RNA (siRNA) specific for ezrin or a Rho-associated kinase (ROCK)-specific inhibitor (Y-27632). In summary, this study provides a piece of evidence demonstrating that persistent infection by E. coli, one of the non-urease-producing bacteria, may contribute to COM metabolic stone formation by translocation of ezrin to apical membranes, thereby promoting COM crystal–cell adhesion. Such ezrin translocation was mediated via Rho/ROCK signaling pathway. These findings may, at least in part, explain the pathogenic mechanisms underlying recurrent UTI-induced metabolic kidney stone disease.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Norsworthy AN, Pearson MM (2017) From catheter to kidney stone: the uropathogenic lifestyle of Proteus mirabilis. Trends Microbiol 25(4):304–315. https://doi.org/10.1016/j.tim.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  2. He Z, Jing Z, Jing-Cun Z, Chuan-Yi H, Fei G (2017) Compositional analysis of various layers of upper urinary tract stones by infrared spectroscopy. Exp Ther Med 14(4):3165–3169. https://doi.org/10.3892/etm.2017.4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tavichakorntrakool R, Prasongwattana V, Sungkeeree S, Saisud P, Sribenjalux P, Pimratana C, Bovornpadungkitti S, Sriboonlue P, Thongboonkerd V (2012) Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis. Nephrol Dial Transplant 27(11):4125–4130. https://doi.org/10.1093/ndt/gfs057

    Article  PubMed  Google Scholar 

  4. Abrahams HM, Stoller ML (2003) Infection and urinary stones. Curr Opin Urol 13(1):63–67. https://doi.org/10.1097/00042307-200301000-00011

    Article  PubMed  Google Scholar 

  5. Djojodimedjo T, Soebadi DM, Soetjipto (2013) Escherichia coli infection induces mucosal damage and expression of proteins promoting urinary stone formation. Urolithiasis 41(4):295–301. https://doi.org/10.1007/s00240-013-0577-4

    Article  CAS  PubMed  Google Scholar 

  6. Kodner CM, Thomas Gupton EK (2010) Recurrent urinary tract infections in women: diagnosis and management. Am Fam Physician 82(6):638–643

    PubMed  Google Scholar 

  7. Hooton TM, Roberts PL, Stapleton AE (2021) Asymptomatic Bacteriuria and Pyuria in premenopausal women. Clin Infect Dis 72(8):1332–1338. https://doi.org/10.1093/cid/ciaa274

    Article  PubMed  Google Scholar 

  8. Chutipongtanate S, Sutthimethakorn S, Chiangjong W, Thongboonkerd V (2013) Bacteria can promote calcium oxalate crystal growth and aggregation. J Biol Inorg Chem 18(3):299–308. https://doi.org/10.1007/s00775-012-0974-0

    Article  CAS  PubMed  Google Scholar 

  9. Barr-Beare E, Saxena V, Hilt EE, Thomas-White K, Schober M, Li B, Becknell B, Hains DS, Wolfe AJ, Schwaderer AL (2015) The interaction between Enterobacteriaceae and calcium oxalate deposits. PLoS One 10(10):e0139575

    Article  Google Scholar 

  10. Mulvey MA, Schilling JD, Hultgren SJ (2001) Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69(7):4572–4579. https://doi.org/10.1128/IAI.69.7.4572-4579.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Somsuan K, Peerapen P, Boonmark W, Plumworasawat S, Samol R, Sakulsak N, Thongboonkerd V (2019) ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma. FASEB J 33(11):12226–12239. https://doi.org/10.1096/fj.201802720RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaiyarit S, Thongboonkerd V (2012) Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. J Proteome Res 11(6):3269–3280. https://doi.org/10.1021/pr300018c

    Article  CAS  PubMed  Google Scholar 

  13. Thongboonkerd V, Semangoen T, Chutipongtanate S (2006) Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta 367(1–2):120–131. https://doi.org/10.1016/j.cca.2005.11.033

    Article  CAS  PubMed  Google Scholar 

  14. Thongboonkerd V, Chutipongtanate S, Semangoen T, Malasit P (2008) Urinary trefoil factor 1 is a novel potent inhibitor of calcium oxalate crystal growth and aggregation. J Urol 179(4):1615–1619. https://doi.org/10.1016/j.juro.2007.11.041

    Article  CAS  PubMed  Google Scholar 

  15. Chaiyarit S, Mungdee S, Thongboonkerd V (2010) Non-radioactive labelling of calcium oxalate crystals for investigations of crystal-cell interaction and internalization. Anal Methods 2(10):1536–1541. https://doi.org/10.1039/C0AY00321B

    Article  CAS  Google Scholar 

  16. Peerapen P, Thongboonkerd V (2020) Differential bound proteins and adhesive capabilities of calcium oxalate monohydrate crystals with various sizes. Int J Biol Macromol 163:2210–2223. https://doi.org/10.1016/j.ijbiomac.2020.09.085

    Article  CAS  PubMed  Google Scholar 

  17. Vinaiphat A, Thongboonkerd V (2018) Characterizations of PMCA2-interacting complex and its role as a calcium oxalate crystal-binding protein. Cell Mol Life Sci 75(8):1461–1482. https://doi.org/10.1007/s00018-017-2699-2

    Article  CAS  PubMed  Google Scholar 

  18. Fong-ngern K, Peerapen P, Sinchaikul S, Chen ST, Thongboonkerd V (2011) Large-scale identification of calcium oxalate monohydrate crystal-binding proteins on apical membrane of distal renal tubular epithelial cells. J Proteome Res 10(10):4463–4477. https://doi.org/10.1021/pr2006878

    Article  CAS  PubMed  Google Scholar 

  19. Peerapen P, Thongboonkerd V (2016) Caffeine prevents kidney stone formation by translocation of apical surface annexin A1 crystal-binding protein into cytoplasm: in vitro evidence. Sci Rep 6:38536. https://doi.org/10.1038/srep38536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fong-ngern K, Sueksakit K, Thongboonkerd V (2016) Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. J Biol Inorg Chem 21(4):463–474. https://doi.org/10.1007/s00775-016-1355-x

    Article  CAS  PubMed  Google Scholar 

  21. Fong-ngern K, Chiangjong W, Thongboonkerd V (2009) Peeling as a novel, simple, and effective method for isolation of apical membrane from intact polarized epithelial cells. Anal Biochem 395(1):25–32. https://doi.org/10.1016/j.ab.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  22. Grant SS, Hung DT (2013) Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4(4):273–283. https://doi.org/10.4161/viru.23987

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wagenlehner F, Nicolle L, Bartoletti R, Gales AC, Grigoryan L, Huang H, Hooton T, Lopardo G, Naber K, Poojary A, Stapleton A, Talan DA, Saucedo JT, Wilcox MH, Yamamoto S, Yang SS, Lee SJ (2021) A global perspective on improving patient care in uncomplicated urinary tract infection: expert consensus and practical guidance. J Glob Antimicrob Resist 28:18–29. https://doi.org/10.1016/j.jgar.2021.11.008

    Article  PubMed  Google Scholar 

  24. Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol 15(8):453–464. https://doi.org/10.1038/nrmicro.2017.42

    Article  CAS  PubMed  Google Scholar 

  25. Hebert M, Potin S, Sebbagh M, Bertoglio J, Breard J, Hamelin J (2008) Rho-ROCK-dependent ezrin-radixin-moesin phosphorylation regulates Fas-mediated apoptosis in Jurkat cells. J Immunol 181(9):5963–5973. https://doi.org/10.4049/jimmunol.181.9.5963

    Article  CAS  PubMed  Google Scholar 

  26. Bretscher A, Reczek D, Berryman M (1997) Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J Cell Sci 110(Pt 24):3011–3018

    Article  CAS  Google Scholar 

  27. Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H, Zhou T, Xiang H, Gao F, Yu X, Liao J, Ward T, Xia P, Emenari C, Ding X, Thompson W, Ma K, Zhu J, Aikhionbare F, Dou K, Cheng SY, Yao X (2011) Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res 71(5):1721–1729. https://doi.org/10.1158/0008-5472.CAN-09-4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Glover M, Moreira CG, Sperandio V, Zimmern P (2014) Recurrent urinary tract infections in healthy and nonpregnant women. Urol Sci 25(1):1–8. https://doi.org/10.1016/j.urols.2013.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  29. Delcaru C, Alexandru I, Podgoreanu P, Grosu M, Stavropoulos E, Chifiriuc MC, Lazar V (2016) Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens. https://doi.org/10.3390/pathogens5040065

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koksoy AY, Gorukmez O (2021) Urinary stone and infection does not always mean a “chicken and egg dilemma”: answers. Pediatr Nephrol 36(8):2295–2297. https://doi.org/10.1007/s00467-021-04979-z

    Article  PubMed  Google Scholar 

  31. Cetin N, Gencler A, Kavaz Tufan A (2020) Risk factors for development of urinary tract infection in children with nephrolithiasis. J Paediatr Child Health 56(1):76–80. https://doi.org/10.1111/jpc.14495

    Article  PubMed  Google Scholar 

  32. Bauza JL, Pieras EC, Grases F, Tubau V, Guimera J, Sabate XA, Piza P (2018) Urinary tract infection’s etiopathogenic role in nephrolithiasis formation. Med Hypotheses 118:34–35. https://doi.org/10.1016/j.mehy.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  33. Naas T, Al-Agili S, Bashir O (2001) Urinary calculi: bacteriological and chemical association. East Mediterr Health J 7(4–5):763–770

    Article  CAS  Google Scholar 

  34. Shafi H, Shahandeh Z, Heidari B, Sedigiani F, Ramaji AA, Pasha YR, Kassaeian AA, Pasha AA, Mir MM (2013) Bacteriological study and structural composition of staghorn stones removed by the anatrophic nephrolithotomic procedure. Saudi J Kidney Dis Transpl 24(2):418–423. https://doi.org/10.4103/1319-2442.109623

    Article  PubMed  Google Scholar 

  35. Chen D, Zhang Y, Huang J, Liang X, Zeng T, Lan C, Duan X, Zhao Z, Zeng G, Tiselius HG, Lu X, Wu W (2018) The analysis of microbial spectrum and antibiotic resistance of uropathogens isolated from patients with urinary stones. Int J Clin Pract 72(6):e13205. https://doi.org/10.1111/ijcp.13205

    Article  CAS  PubMed  Google Scholar 

  36. Schwaderer AL, Wolfe AJ (2017) The association between bacteria and urinary stones. Ann Transl Med 5(2):32. https://doi.org/10.21037/atm.2016.11.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tavichakorntrakool R, Boonsiri P, Prasongwatana V, Lulitanond A, Wongkham C, Thongboonkerd V (2017) Differential colony size, cell length, and cellular proteome of Escherichia coli isolated from urine vs. stone nidus of kidney stone patients. Clin Chim Acta 466:112–119. https://doi.org/10.1016/j.cca.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  38. Nilekani S, SivaRaman C (1983) Purification and properties of citrate lyase from Escherichia coli. Biochemistry 22(20):4657–4663. https://doi.org/10.1021/bi00289a008

    Article  CAS  PubMed  Google Scholar 

  39. Srivastava T, Winston MJ, Auron A, Alon US (2009) Urine calcium/citrate ratio in children with hypercalciuric stones. Pediatr Res 66(1):85–90. https://doi.org/10.1203/PDR.0b013e3181a2939e

    Article  CAS  PubMed  Google Scholar 

  40. Schilling JD, Lorenz RG, Hultgren SJ (2002) Effect of trimethoprim-sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 70(12):7042–7049. https://doi.org/10.1128/IAI.70.12.7042-7049.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thongboonkerd V (2019) Proteomics of crystal-cell interactions: a model for kidney stone research. Cells 8(9):1076. https://doi.org/10.3390/cells8091076

    Article  CAS  PubMed Central  Google Scholar 

  42. Lieske JC, Leonard R, Swift H, Toback FG (1996) Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol 270(1 Pt 2):F192–F199

    CAS  PubMed  Google Scholar 

  43. Kanlaya R, Sintiprungrat K, Chaiyarit S, Thongboonkerd V (2013) Macropinocytosis is the major mechanism for endocytosis of calcium oxalate crystals into renal tubular cells. Cell Biochem Biophys 67(3):1171–1179. https://doi.org/10.1007/s12013-013-9630-8

    Article  CAS  PubMed  Google Scholar 

  44. Lieske JC, Deganello S, Toback FG (1999) Cell-crystal interactions and kidney stone formation. Nephron 81(Suppl 1):8–17

    Article  CAS  Google Scholar 

  45. Chutipongtanate S, Fong-ngern K, Peerapen P, Thongboonkerd V (2012) High calcium enhances calcium oxalate crystal binding capacity of renal tubular cells via increased surface annexin A1 but impairs their proliferation and healing. J Proteome Res 11(7):3650–3663. https://doi.org/10.1021/pr3000738

    Article  CAS  PubMed  Google Scholar 

  46. Kanlaya R, Fong-ngern K, Thongboonkerd V (2013) Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion. J Proteomics 80:55–65. https://doi.org/10.1016/j.jprot.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  47. Manissorn J, Khamchun S, Vinaiphat A, Thongboonkerd V (2016) Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion. Sci Rep 6:28808. https://doi.org/10.1038/srep28808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pongsakul N, Vinaiphat A, Chanchaem P, Fong-ngern K, Thongboonkerd V (2016) Lamin A/C in renal tubular cells is important for tissue repair, cell proliferation, and calcium oxalate crystal adhesion, and is associated with potential crystal receptors. FASEB J 30(10):3368–3377. https://doi.org/10.1096/fj.201600426R

    Article  CAS  PubMed  Google Scholar 

  49. Fong-ngern K, Thongboonkerd V (2016) α-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor. Sci Rep 6:36103. https://doi.org/10.1038/srep36103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peerapen P, Thongboonkerd V (2019) Protective cellular mechanism of estrogen against kidney stone formation: a proteomics approach and functional validation. Proteomics 19(19):e1900095. https://doi.org/10.1002/pmic.201900095

    Article  CAS  PubMed  Google Scholar 

  51. Sueksakit K, Thongboonkerd V (2019) Protective effects of finasteride against testosterone-induced calcium oxalate crystallization and crystal-cell adhesion. J Biol Inorg Chem 24(7):973–983. https://doi.org/10.1007/s00775-019-01692-z

    Article  CAS  PubMed  Google Scholar 

  52. Sutthimethakorn S, Thongboonkerd V (2020) Effects of high-dose uric acid on cellular proteome, intracellular ATP, tissue repairing capability and calcium oxalate crystal-binding capability of renal tubular cells: Implications to hyperuricosuria-induced kidney stone disease. Chem Biol Interact 331:109270. https://doi.org/10.1016/j.cbi.2020.109270

    Article  CAS  PubMed  Google Scholar 

  53. Garcia-Ortiz A, Serrador JM (2020) ERM proteins at the crossroad of leukocyte polarization, migration and intercellular adhesion. Int J Mol Sci. https://doi.org/10.3390/ijms21041502

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gautreau A, Louvard D, Arpin M (2000) Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J Cell Biol 150(1):193–203. https://doi.org/10.1083/jcb.150.1.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67(9):545–554. https://doi.org/10.1002/cm.20472

    Article  CAS  Google Scholar 

  56. Kotani H, Takaishi K, Sasaki T, Takai Y (1997) Rho regulates association of both the ERM family and vinculin with the plasma membrane in MDCK cells. Oncogene 14(14):1705–1713. https://doi.org/10.1038/sj.onc.1200998

    Article  CAS  PubMed  Google Scholar 

  57. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140(3):647–657. https://doi.org/10.1083/jcb.140.3.647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Simonovic I, Arpin M, Koutsouris A, Falk-Krzesinski HJ, Hecht G (2001) Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function. Infect Immun 69(9):5679–5688. https://doi.org/10.1128/IAI.69.9.5679-5688.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Skoudy A, Nhieu GT, Mantis N, Arpin M, Mounier J, Gounon P, Sansonetti P (1999) A functional role for ezrin during Shigella flexneri entry into epithelial cells. J Cell Sci 112(Pt 13):2059–2068. https://doi.org/10.1242/jcs.112.13.2059

    Article  CAS  PubMed  Google Scholar 

  60. Pust S, Morrison H, Wehland J, Sechi AS, Herrlich P (2005) Listeria monocytogenes exploits ERM protein functions to efficiently spread from cell to cell. EMBO J 24(6):1287–1300. https://doi.org/10.1038/sj.emboj.7600595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berger CN, Crepin VF, Jepson MA, Arbeloa A, Frankel G (2009) The mechanisms used by enteropathogenic Escherichia coli to control filopodia dynamics. Cell Microbiol 11(2):309–322. https://doi.org/10.1111/j.1462-5822.2008.01254.x

    Article  CAS  PubMed  Google Scholar 

  62. Swanson KA, Crane DD, Caldwell HD (2007) Chlamydia trachomatis species-specific induction of ezrin tyrosine phosphorylation functions in pathogen entry. Infect Immun 75(12):5669–5677. https://doi.org/10.1128/IAI.01096-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Pietro C, Zhang PX, O’Rourke TK, Murray TS, Wang L, Britto CJ, Koff JL, Krause DS, Egan ME, Bruscia EM (2017) Ezrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune response in macrophages. Sci Rep 7(1):10882. https://doi.org/10.1038/s41598-017-11012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jianjun Z, Baochun Z, Limei M, Lijun L (2021) Exploring the beneficial role of ROCK inhibitors in sepsis-induced cerebral and cognitive injury in rats. Fundam Clin Pharmacol 35(5):882–891. https://doi.org/10.1111/fcp.12645

    Article  CAS  PubMed  Google Scholar 

  65. Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A (2004) Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 23(17):3570–3582. https://doi.org/10.1038/sj.emboj.7600359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bulgin R, Raymond B, Garnett JA, Frankel G, Crepin VF, Berger CN, Arbeloa A (2010) Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. Infect Immun 78(4):1417–1425. https://doi.org/10.1128/IAI.01250-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Woolery AR, Yu X, LaBaer J, Orth K (2014) AMPylation of Rho GTPases subverts multiple host signaling processes. J Biol Chem 289(47):32977–32988. https://doi.org/10.1074/jbc.M114.601310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Sutthirat Srisuwan and Chonnicha Subkod for their assistance.

Funding

This study was supported by Mahidol University research grant.

Author information

Authors and Affiliations

Authors

Contributions

RK and VT designed research; RK performed experiments; RK and VT analyzed data; RK and VT wrote the manuscript; All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Visith Thongboonkerd.

Ethics declarations

Conflict of interest

The authors declare NO conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 900 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanlaya, R., Thongboonkerd, V. Persistent Escherichia coli infection in renal tubular cells enhances calcium oxalate crystal–cell adhesion by inducing ezrin translocation to apical membranes via Rho/ROCK pathway. Cell. Mol. Life Sci. 79, 381 (2022). https://doi.org/10.1007/s00018-022-04414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04414-y

Keywords

Navigation