Skip to main content

Advertisement

Log in

Molecular dissection on inhibition of Ras-induced cellular senescence by small t antigen of SV40

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Simian virus 40 (SV40) is a potentially oncogenic virus of monkey origin. Transmission, prevalence, and pathogenicity rates of SV40 are unclear, but infection can occur in humans, for example individuals with high contact with rhesus macaques and individuals that received contaminated early batches of polio vaccines in 1950–1963. In addition, several human polyomaviruses, proven carcinogenic, are also highly common in global populations. Cellular senescence is a major mechanism of cancer prevention in vivo. Hyperactivation of Ras usually induces cellular senescence rather than cell transformation. Previous studies suggest small t antigen (ST) of SV40 may interfere with cellular senescence induced by Ras. In the current study, ST was demonstrated to inhibit Ras-induced cellular senescence (RIS) and accumulation of DNA damage in Ras-activated cells. In addition, ST suppressed the signal transmission from BRaf to MEK and thus blocked the downstream transmission of the activated Ras signal. B56γ knockdown mimicked the inhibitory effects of ST overexpression on RIS. Furthermore, KSR1 knockdown inhibited Ras activation and the subsequent cellular senescence. Further mechanism studies indicated that the phosphorylation level of KSR1 rather than the levels of the total protein regulates the activation of Ras signaling pathway. In sum, ST inhibits the continuous hyperactivation of Ras signals by interfering with the normal functions of PP2A-B56γ of dephosphorylating KSR1, thus inhibiting the occurrence of cellular senescence. Although the roles of SV40 in human carcinogenesis are controversial so far, our study has shown that ST of polyomaviruses has tumorigenic potential by inhibiting oncogene-induced senescence (OIS) as a proof of concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Hayflick L (1965) The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  2. Franza BR Jr et al (1986) In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes. Cell 44(3):409–418

    Article  CAS  PubMed  Google Scholar 

  3. Serrano M et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  4. Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35(22):7475–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Girardi AJ et al (1962) Development of tumors in hamsters inoculated in the neonatal period with vacuolating virus, SV-40. Proc Soc Exp Biol Med 109:649–660

    Article  CAS  PubMed  Google Scholar 

  7. Mazzoni E et al (2015) Significant association between human osteosarcoma and simian virus 40. Cancer 121(5):708–715

    Article  CAS  PubMed  Google Scholar 

  8. Vilchez RA, Butel JS (2004) Emergent human pathogen simian virus 40 and its role in cancer. Clin Microbiol Rev 17(3):495–508 (table of contents)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mazziotta C et al (2021) Serum Antibodies Against the Oncogenic Merkel Cell Polyomavirus Detected by an Innovative Immunological Assay With Mimotopes in Healthy Subjects. Front Immunol 12:676627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pancaldi C et al (2011) Merkel cell polyomavirus DNA sequences in the buffy coats of healthy blood donors. Blood 117(26):7099–7101

    Article  CAS  PubMed  Google Scholar 

  11. Rinaldo CH, Tylden GD, Sharma BN (2013) The human polyomavirus BK (BKPyV): virological background and clinical implications. APMIS 121(8):728–745

    Article  CAS  PubMed  Google Scholar 

  12. Pietropaolo V, Prezioso C, Moens U (2020) Merkel cell polyomavirus and merkel cell carcinoma. Cancers (Basel) 12(7):1774

    Article  CAS  Google Scholar 

  13. Papadimitriou JC et al (2016) BK polyomavirus infection and renourinary tumorigenesis. Am J Transplant 16(2):398–406

    Article  CAS  PubMed  Google Scholar 

  14. Boulalas I et al (2009) Activation of RAS family genes in urothelial carcinoma. J Urol 181(5):2312–2319

    Article  CAS  PubMed  Google Scholar 

  15. Kompier LC et al (2010) FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE 5(11):e13821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Sfakianos JP et al (2015) Genomic characterization of upper tract urothelial carcinoma. Eur Urol 68(6):970–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Starrett GJ, Buck CB (2019) The case for BK polyomavirus as a cause of bladder cancer. Curr Opin Virol 39:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta G et al (2018) Treatment for presumed BK polyomavirus nephropathy and risk of urinary tract cancers among kidney transplant recipients in the United States. Am J Transplant 18(1):245–252

    Article  CAS  PubMed  Google Scholar 

  19. Liu S et al (2017) Polyomavirus replication and smoking are independent risk factors for bladder cancer after renal transplantation. Transplantation 101(6):1488–1494

    Article  PubMed  Google Scholar 

  20. Chang LS et al (1985) Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology 146(2):246–261

    Article  CAS  PubMed  Google Scholar 

  21. Martin RG et al (1979) The roles of the simian virus 40 tumor antigens in transformation of Chinese hamster lung cells. Cell 17(3):635–643

    Article  CAS  PubMed  Google Scholar 

  22. Nachtigal M et al (1990) Transformation of rabbit vascular smooth muscle cells by transfection with the early region of SV40 DNA. Am J Pathol 136(2):297–306

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hahn WC et al (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–468

    Article  CAS  PubMed  Google Scholar 

  24. Shang D et al (2020) Interleukin-1beta drives cellular senescence of rat astrocytes induced by oligomerized amyloid beta peptide and oxidative stress. Front Neurol 11:929

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tu Z et al (2011) Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell 21(6):1077–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tu Z et al (2013) BRG1 is required for formation of senescence-associated heterochromatin foci induced by oncogenic RAS or BRCA1 loss. Mol Cell Biol 33(9):1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H et al (2021) HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression. J Biol Chem 297(2):100996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shang D et al (2018) Identification of a pyridine derivative inducing senescence in ovarian cancer cell lines via P21 activation. Clin Exp Pharmacol Physiol 45(5):452–460

    Article  CAS  PubMed  Google Scholar 

  29. Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  CAS  PubMed  Google Scholar 

  30. Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196(1):33–39

    Article  CAS  PubMed  Google Scholar 

  31. Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40(10):813–819

    Article  CAS  PubMed  Google Scholar 

  32. Alessio N et al (2021) Different stages of quiescence, senescence, and cell stress identified by molecular algorithm based on the expression of Ki67, RPS6, and beta-galactosidase activity. Int J Mol Sci 22(6):3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Besancenot R et al (2010) A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation. PLoS Biol 8(9):e1000476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Bigenwald C et al (2021) BRAF(V600E)-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nat Med 27(5):851–861

    Article  CAS  PubMed  Google Scholar 

  35. Lin AW et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12(19):3008–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Michaloglou C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  37. Rundell K, Parakati R (2001) The role of the SV40 ST antigen in cell growth promotion and transformation. Semin Cancer Biol 11(1):5–13

    Article  CAS  PubMed  Google Scholar 

  38. Van Hoof C, Goris J (2004) PP2A fulfills its promises as tumor suppressor: which subunits are important? Cancer Cell 5(2):105–106

    Article  PubMed  Google Scholar 

  39. Yang SI et al (1991) Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol 11(4):1988–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen Y et al (2007) Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol 14(6):527–534

    Article  CAS  PubMed  Google Scholar 

  41. Cho US et al (2007) Structural basis of PP2A inhibition by small t antigen. PLoS Biol 5(8):e202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Chen W et al (2004) Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5(2):127–136

    Article  CAS  PubMed  Google Scholar 

  43. Lavoie H et al (2018) MEK drives BRAF activation through allosteric control of KSR proteins. Nature 554(7693):549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Neilsen BK et al (2017) KSR as a therapeutic target for Ras-dependent cancers. Expert Opin Ther Targets 21(5):499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park E et al (2019) Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature 575(7783):545–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roy F et al (2002) KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev 16(4):427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shen CH et al (2013) Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Mol Cell 52(2):161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McKay MM, Ritt DA, Morrison DK (2009) Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci U S A 106(27):11022–11027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muller J et al (2001) C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8(5):983–993

    Article  CAS  PubMed  Google Scholar 

  50. Ory S et al (2003) Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol 13(16):1356–1364

    Article  CAS  PubMed  Google Scholar 

  51. Razidlo GL et al (2004) Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation. J Biol Chem 279(46):47808–47814

    Article  CAS  PubMed  Google Scholar 

  52. Kortum RL et al (2014) Caveolin-1 is required for kinase suppressor of Ras 1 (KSR1)-mediated extracellular signal-regulated kinase 1/2 activation, H-RasV12-induced senescence, and transformation. Mol Cell Biol 34(18):3461–3472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Kortum RL et al (2006) The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence. Mol Cell Biol 26(6):2202–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ritt DA et al (2010) Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol 30(3):806–819

    Article  CAS  PubMed  Google Scholar 

  55. Mannava S et al (2012) PP2A-B56alpha controls oncogene-induced senescence in normal and tumor human melanocytic cells. Oncogene 31(12):1484–1492

    Article  CAS  PubMed  Google Scholar 

  56. Hahn WC et al (2002) Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22(7):2111–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moreno CS et al (2004) Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Res 64(19):6978–6988

    Article  CAS  PubMed  Google Scholar 

  58. Oshikawa K et al (2020) A fail-safe system to prevent oncogenesis by senescence is targeted by SV40 small T antigen. Oncogene 39(10):2170–2186

    Article  CAS  PubMed  Google Scholar 

  59. Schrama D et al (2014) Presence of human polyomavirus 6 in mutation-specific BRAF inhibitor-induced epithelial proliferations. JAMA Dermatol 150(11):1180–1186

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shah KV (2007) SV40 and human cancer: a review of recent data. Int J Cancer 120(2):215–223

    Article  CAS  PubMed  Google Scholar 

  61. Bulut Y et al (2013) Potential relationship between BK virus and renal cell carcinoma. J Med Virol 85(6):1085–1089

    Article  CAS  PubMed  Google Scholar 

  62. Casadei C et al (2019) Targeted therapies for advanced bladder cancer: new strategies with FGFR inhibitors. Ther Adv Med Oncol 11:1758835919890285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Rhijn BWG et al (2020) FGFR3 mutation status and FGFR3 expression in a large bladder cancer cohort treated by radical cystectomy: implications for anti-FGFR3 treatment?(dagger). Eur Urol 78(5):682–687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Rugang Zhang at the Wistar Institute for his great help and suggestions.

Funding

This work was supported by the National Natural Science Foundation 31771521 (to Z. Tu) and 81672582 (to H. Liu); Top Talent of Innovative Research Team of Jiangsu Province (to H. Liu and Z. Tu); Senior Talent Start-up Funds of Jiangsu University 14JDG050 (to H. Liu) and 14JDG011 (to Z. Tu).

Author information

Authors and Affiliations

Authors

Contributions

Project administration, supervision, funding acquisition and provision, and writing the original draft were accomplished by ZT and HL. Conceptualization and methodology were accomplished by ZT, HL, and XZ. DS, TZ, and YW were responsible for investigation, data curation, and analysis.

Corresponding authors

Correspondence to Hanqing Liu or Zhigang Tu.

Ethics declarations

Conflict of interests

The authors have no conflict of interest to disclose about this study.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, D., Zhou, T., Zhuang, X. et al. Molecular dissection on inhibition of Ras-induced cellular senescence by small t antigen of SV40. Cell. Mol. Life Sci. 79, 242 (2022). https://doi.org/10.1007/s00018-022-04275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04275-5

Keywords

Navigation