Skip to main content
Log in

CircACTR2 in macrophages promotes renal fibrosis by activating macrophage inflammation and epithelial–mesenchymal transition of renal tubular epithelial cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The crosstalk between macrophages and tubular epithelial cells (TECs) actively regulates the progression of renal fibrosis. In the present study, we revealed the significance of circular RNA ACTR2 (circACTR2) in regulating macrophage inflammation, epithelial–mesenchymal transition (EMT) of TECs, and the development of renal fibrosis. Our results showed UUO-induced renal fibrosis was associated with increased inflammation and EMT, hypertrophy of contralateral kidney, up-regulations of circACTR2 and NLRP3, and the down-regulation of miR-561. CircACTR2 sufficiently and essentially promoted the activation of NLRP3 inflammasome, pyroptosis, and inflammation in macrophages, and through paracrine effect, stimulated EMT and fibrosis of TECs. Mechanistically, circACTR2 sponged miR-561 and up-regulated NLRP3 expression level to induce the secretion of IL-1β. In TECs, IL-1β induced renal fibrosis via up-regulating fascin-1. Knocking down circACTR2 or elevating miR-561 potently alleviated renal fibrosis in vivo. In summary, circACTR2, by sponging miR-561, activated NLRP3 inflammasome, promoted macrophage inflammation, and stimulated macrophage-induced EMT and fibrosis of TECs. Knocking down circACTR2 and overexpressing miR-561 may, thus, benefit the treatment of renal fibrosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo 31(1):1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C (2019) A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int 96(5):1048–1050

    Article  PubMed  Google Scholar 

  3. Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326

    Article  CAS  PubMed  Google Scholar 

  4. Zhong J, Yang HC, Fogo AB (2017) A perspective on chronic kidney disease progression. Am J Physiol Renal Physiol 312(3):F375–F384

    Article  CAS  PubMed  Google Scholar 

  5. Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M et al (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21(9):989–997

    Article  CAS  PubMed  Google Scholar 

  6. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21(9):998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119(6):1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI et al (2016) Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 365(3):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masola V, Carraro A, Granata S, Signorini L, Bellin G, Violi P et al (2019) In vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells. J Transl Med 17(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meng XM (2019) Inflammatory mediators and renal fibrosis. Adv Exp Med Biol 1165:381–406

    Article  CAS  PubMed  Google Scholar 

  12. Tan TK, Zheng G, Hsu TT, Lee SR, Zhang J, Zhao Y et al (2013) Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab Invest 93(4):434–449

    Article  CAS  PubMed  Google Scholar 

  13. Tan TK, Zheng G, Hsu TT, Wang Y, Lee VW, Tian X et al (2010) Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am J Pathol 176(3):1256–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu CC, Chien CT, Chang TC (2016) M2 macrophage polarization modulates epithelial-mesenchymal transition in cisplatin-induced tubulointerstitial fibrosis. Biomedicine (Taipei) 6(1):5

    Article  Google Scholar 

  15. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. https://doi.org/10.3390/ijms20133328

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Wang Z (2019) Effect and regulation of the NLRP3 inflammasome during renal fibrosis. Front Cell Dev Biol 7:379

    Article  PubMed  Google Scholar 

  17. Wen S, Li S, Li L, Fan Q (2020) circACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol Pharm Bull 43(3):558–564

    Article  CAS  PubMed  Google Scholar 

  18. Yun J, Ren J, Liu Y, Dai L, Song L, Ma X et al (2021) Circ-ACTR2 aggravates the high glucose-induced cell dysfunction of human renal mesangial cells through mediating the miR-205-5p/HMGA2 axis in diabetic nephropathy. Diabetol Metab Syndr 13(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21(8):475–490

    Article  CAS  PubMed  Google Scholar 

  20. Soji K, Doi S, Nakashima A, Sasaki K, Doi T, Masaki T (2018) Deubiquitinase inhibitor PR-619 reduces Smad4 expression and suppresses renal fibrosis in mice with unilateral ureteral obstruction. PLoS ONE 13(8):e0202409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Panda AC (2018) Circular RNAs act as miRNA sponges. Adv Exp Med Biol 1087:67–79

    Article  CAS  PubMed  Google Scholar 

  22. Lee MK, Park JH, Gi SH, Hwang YS (2018) IL-1beta induces fascin expression and increases cancer invasion. Anticancer Res 38(11):6127–6132

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Cho IH, Park JH, Lee MK, Hwang YS (2019) Fascin is involved in cancer cell invasion and is regulated by stromal factors. Oncol Rep 41(1):465–474

    CAS  PubMed  Google Scholar 

  24. Fu H, Gu YH, Yang YN, Liao S, Wang GH (2020) MiR-200b/c family inhibits renal fibrosis through modulating epithelial-to-mesenchymal transition via targeting fascin-1/CD44 axis. Life Sci 252:117589

    Article  CAS  PubMed  Google Scholar 

  25. Gewin LS (2018) Renal fibrosis: primacy of the proximal tubule. Matrix Biol 68–69:248–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cao Q, Harris DC, Wang Y (2015) Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda) 30(3):183–194

    CAS  Google Scholar 

  27. Song S, Qiu D, Luo F, Wei J, Wu M, Wu H et al (2018) Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J Mol Endocrinol 61(3):101–113

    Article  CAS  PubMed  Google Scholar 

  28. Zhuang Y, Ding G, Zhao M, Bai M, Yang L, Ni J et al (2014) NLRP3 inflammasome mediates albumin-induced renal tubular injury through impaired mitochondrial function. J Biol Chem 289(36):25101–25111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anders HJ, Suarez-Alvarez B, Grigorescu M, Foresto-Neto O, Steiger S, Desai J et al (2018) The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Kidney Int 93(3):656–669

    Article  CAS  PubMed  Google Scholar 

  30. Jin J, Sun H, Shi C, Yang H, Wu Y, Li W et al (2020) Circular RNA in renal diseases. J Cell Mol Med 24(12):6523–6533

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin J, Jiang Z, Liu C, Zhou D, Song J, Liao Y et al (2020) Emerging roles of long non-coding RNAs in renal fibrosis. Life (Basel). https://doi.org/10.3390/life10080131

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ge X, Xi L, Wang Q, Li H, Xia L, Cang Z et al (2020) Circular RNA Circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy. Gene 758:144952

    Article  CAS  PubMed  Google Scholar 

  33. Hu W, Han Q, Zhao L, Wang L (2019) Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1. J Cell Physiol 234(2):1469–1476

    Article  CAS  PubMed  Google Scholar 

  34. Liu R, Zhang M, Ge Y (2021) Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185. Gene 765:145065

    Article  CAS  PubMed  Google Scholar 

  35. Wei M, Wang L, Wu T, Xi J, Han Y, Yang X et al (2016) NLRP3 activation was regulated by DNA methylation modification during Mycobacterium tuberculosis infection. Biomed Res Int 2016:4323281

    PubMed  PubMed Central  Google Scholar 

  36. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791

    Article  CAS  PubMed  Google Scholar 

  37. Cao B, Wang T, Qu Q, Kang T, Yang Q (2018) Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson’s disease via regulating miR-7/NLRP3 pathway. Neuroscience 388:118–127

    Article  CAS  PubMed  Google Scholar 

  38. Cong J, Gong J, Yang C, Xia Z, Zhang H (2020) miR-22 suppresses tumor invasion and metastasis in colorectal cancer by targeting NLRP3. Cancer Manag Res 12:5419–5429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu X, Ji H, Wang Y, Gu C, Gu W, Hu L et al (2019) Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxid Med Cell Longev 2019:4087298

    PubMed  PubMed Central  Google Scholar 

  40. Xu W, Wang Y, Ma Y, Yang J (2020) MiR-223 plays a protecting role in neutrophilic asthmatic mice through the inhibition of NLRP3 inflammasome. Respir Res 21(1):116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES (2013) Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol 191(8):3995–3999

    Article  CAS  PubMed  Google Scholar 

  42. Lin KM, Hu W, Troutman TD, Jennings M, Brewer T, Li X et al (2014) IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 111(2):775–780

    Article  CAS  PubMed  Google Scholar 

  43. Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49(2):331–338

    Article  CAS  PubMed  Google Scholar 

  44. Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J et al (2017) NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell 68(1):185–97.e6

    Article  CAS  PubMed  Google Scholar 

  45. Spalinger MR, Kasper S, Gottier C, Lang S, Atrott K, Vavricka SR et al (2016) NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Invest 126(5):1783–1800

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang Y, Wang Y, He Z, Liu Y, Chen C, Wang Y et al (2020) Trimetazidine inhibits renal tubular epithelial cells to mesenchymal transition in diabetic rats via upregulation of Sirt1. Front Pharmacol 11:1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lv ZM, Wang Q, Wan Q, Lin JG, Hu MS, Liu YX et al (2011) The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells. PLoS ONE 6(7):e22806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bai Y, Lu H, Lin C, Xu Y, Hu D, Liang Y et al (2016) Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis. Int J Mol Med 37(5):1317–1327

    Article  CAS  PubMed  Google Scholar 

  49. Hayashi Y, Osanai M, Lee GH (2011) Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer Sci 102(6):1228–1235

    Article  CAS  PubMed  Google Scholar 

  50. Li A, Morton JP, Ma Y, Karim SA, Zhou Y, Faller WJ et al (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology 146(5):1386-96 e1–17

    Article  CAS  PubMed  Google Scholar 

  51. Mao X, Duan X, Jiang B (2016) Fascin induces epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating wnt/beta-catenin signaling. Med Sci Monit 22:3479–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by General Project of Health Committee of Hunan Province (202103050649) and Natural Science Funds for Youth Fund of Hunan Province (2018JJ3781).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All animal procedures received approval from the Animal Care and Use Committee of the third Xiangya Hospital, Central South University (Changsha, China).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Gu, YH., Tan, J. et al. CircACTR2 in macrophages promotes renal fibrosis by activating macrophage inflammation and epithelial–mesenchymal transition of renal tubular epithelial cells. Cell. Mol. Life Sci. 79, 253 (2022). https://doi.org/10.1007/s00018-022-04247-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04247-9

Keywords

Navigation