Skip to main content

Advertisement

Log in

Current insights into the role of Fli-1 in hematopoiesis and malignant transformation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Fli-1, a member of the ETS family of transcription factors, was discovered in 1991 through retroviral insertional mutagenesis as a driver of mouse erythroleukemias. In the past 30 years, nearly 2000 papers have defined its biology and impact on normal development and cancer. In the hematopoietic system, Fli-1 controls self-renewal of stem cells and their differentiation into diverse mature blood cells. Fli-1 also controls endothelial survival and vasculogenesis, and high and low levels of Fli-1 are implicated in the auto-immune diseases systemic lupus erythematosus and systemic sclerosis, respectively. In addition, aberrant Fli-1 expression is observed in, and is essential for, the growth of multiple hematological malignancies and solid cancers. Here, we review the historical context and latest research on Fli-1, focusing on its role in hematopoiesis, immune response, and malignant transformation. The importance of identifying Fli-1 modulators (both agonists and antagonists) and their potential clinical applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

F-MuLV:

Friend murine leukemia virus

SFFV:

Spleen focus forming virus

FV:

Friend virus

Fli-1:

Friend virus leukemia integration 1

TF:

Transcription factor

ETS:

E26 transformation-specific

ATA:

Amino-terminal transactivation

CTA:

Carboxy-terminal transactivation

HSCs:

Hematopoietic stem cells

TME:

Tumor microenvironment

hESCs:

Human embryonic stem cells

TCGA:

The cancer genome atlas

MEP:

Megakaryocyte erythroid progenitors

TPO:

Thrombopoietin

EPO:

Erythropoietin

TPA:

Tetradecanoylphorbol-13-acetate

LDBI:

LIM domain-binding protein 1

ChIp:

Chromatin immunoprecipitation

WAS:

Wiscott Aldrich syndrome

KLF1:

Kruppel-like factor 1

DN:

Double-negative

DP:

Double-positive (DP)

Treg:

Regulatory T

Teff:

Effector T

CTA:

Carboxy-terminal activation

SLE:

Systemic lupus erythematous

NKs:

Natural killer cells

PKCδ:

Protein kinase C-delta

References

  1. Friend C (1957) Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia. J Exp Med 105:307–318. https://doi.org/10.1084/jem.105.4.307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Howard JC, Yousefi S, Cheong G et al (1993) Temporal order and functional analysis of mutations within the Fli-1 and p53 genes during the erythroleukemias induced by F-MuLV. Oncogene 8:2721–2729

    CAS  PubMed  Google Scholar 

  3. Ben-David Y, Giddens EB, Bernstein A (1990) Identification and mapping of a common proviral integration site Fli-1 in erythroleukemia cells induced by Friend murine leukemia virus. Proc Natl Acad Sci USA 87:1332–1336. https://doi.org/10.1073/pnas.87.4.1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ben-David Y, Giddens EB, Letwin K et al (1991) Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev 5:908–918. https://doi.org/10.1101/gad.5.6.908

    Article  CAS  PubMed  Google Scholar 

  5. Truong AH, Ben-David Y (2000) The role of Fli-1 in normal cell function and malignant transformation. Oncogene 19(55):6482–6489. https://doi.org/10.1038/sj.onc.1204042

    Article  CAS  PubMed  Google Scholar 

  6. Ben-David Y, Prideaux VR, Chow V et al (1988) Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene 3:179–185

    CAS  PubMed  Google Scholar 

  7. Delattre O, Zucman J, Plougastel B et al (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165. https://doi.org/10.1038/359162a0

    Article  CAS  PubMed  Google Scholar 

  8. May WA, Gishizky ML, Lessnick SL et al (1993) Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci USA 90:5752–5756. https://doi.org/10.1073/pnas.90.12.5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Im YH, Kim HT, Lee C et al (2000) EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Can Res 60:1536–1540

    CAS  Google Scholar 

  10. Li Y, Luo H, Liu T et al (2015) The ets transcription factor Fli-1 in development, cancer and disease. Oncogene 34:2022–2031. https://doi.org/10.1038/onc.2014.162

    Article  CAS  PubMed  Google Scholar 

  11. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644. https://doi.org/10.1016/j.cell.2008.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Graaf CA, Choi J, Baldwin TM et al (2016) Haemopedia: an expression atlas of murine hematopoietic cells. Stem Cell Rep 7:571–582. https://doi.org/10.1016/j.stemcr.2016.07.007

    Article  Google Scholar 

  13. Choi J, Baldwin TM, Wong M et al (2019) Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Res 47:D780–D785. https://doi.org/10.1093/nar/gky1020

    Article  CAS  PubMed  Google Scholar 

  14. Badwe CR, Lis R, Barcia Durán JG et al (2017) Fli1 is essential for the maintenance of hematopoietic stem cell homeostasis and function. Blood 130:3769. https://doi.org/10.1182/blood.V130.Suppl_1.3769.3769

    Article  Google Scholar 

  15. Hart A, Melet F, Grossfeld P et al (2000) Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13:167–177. https://doi.org/10.1016/s1074-7613(00)00017-0

    Article  CAS  PubMed  Google Scholar 

  16. Zhao H, Zhao Y, Li Z et al (2018) FLI1 and PKC co-activation promote highly efficient differentiation of human embryonic stem cells into endothelial-like cells. Cell Death Dis 9:131. https://doi.org/10.1038/s41419-017-0162-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu T, Yao Y, Zhang G et al (2017) A screen for Fli-1 transcriptional modulators identifies PKC agonists that induce erythroid to megakaryocytic differentiation and suppress leukemogenesis. Oncotarget 8:16728–16743. https://doi.org/10.18632/oncotarget.14377

    Article  PubMed  Google Scholar 

  18. Kruse EA, Loughran SJ, Baldwin TM et al (2009) Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci USA 106:13814–13819. https://doi.org/10.1073/pnas.0906556106

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ben-David Y, Bernstein A (1991) Friend virus-induced erythroleukemia and the multistage nature of cancer. Cell 66(5):831–834. https://doi.org/10.1016/0092-8674(91)90428-2

    Article  CAS  PubMed  Google Scholar 

  20. Ng AP, Loughran SJ, Metcalf D, Hyland CD, de Graaf CA, Hu Y et al (2011) Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice. Blood 118(9):2454–2461. https://doi.org/10.1182/blood-2011-03-344739

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Xu B, Yu J et al (2020) Fli-1 activation through targeted promoter activity regulation using a novel 3′, 5′-diprenylated chalcone inhibits growth and metastasis of prostate cancer cells. Int J Mol Sci 21(6):2216. https://doi.org/10.3390/ijms21062216

    Article  CAS  PubMed Central  Google Scholar 

  22. Deveaux S, Filipe A, Lemarchandel V et al (1996) Analysis of the thrombopoietin receptor (MPL) promoter implicates GATA and Ets proteins in the coregulation of megakaryocyte-specific genes. Blood 87:4678–4685

    Article  CAS  Google Scholar 

  23. Athanasiou M, Clausen PA, Mavrothalassitis GJ et al (1996) Increased expression of the ETS-related transcription factor FLI-1/ERGB correlates with and can induce the megakaryocytic phenotype. Cell Growth Differ 7:1525–1534 (PMID: 8930402)

    CAS  PubMed  Google Scholar 

  24. Bastian LS, Kwiatkowski BA, Breininger J et al (1999) Regulation of the megakaryocytic glycoprotein IX promoter by the oncogenic Ets transcription factor Fli-1. Blood 93:2637–2644 (PMID: 10194443)

    Article  CAS  Google Scholar 

  25. Raslova H, Komura E, Le Couedic JP et al (2004) FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Investig 114:77–84. https://doi.org/10.1172/JCI21197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stockley J, Morgan NV, Bem D et al (2013) Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects. Blood 122:4090–4093. https://doi.org/10.1182/blood-2013-06-506873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krishnamurti L, Neglia JP, Nagarajan R et al (2001) Paris-Trousseau syndrome platelets in a child with Jacobsen’s syndrome. Am J Hematol 66:295–299. https://doi.org/10.1002/ajh.1061

    Article  CAS  PubMed  Google Scholar 

  28. Klimchenko O, Mori M, Distefano A et al (2009) A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood 114:1506–1517. https://doi.org/10.1182/blood-2008-09-178863

    Article  CAS  PubMed  Google Scholar 

  29. Siripin D, Kheolamai P, U-Pratya Y et al (2015) Transdifferentiation of erythroblasts to megakaryocytes using FLI1 and ERG transcription factors. Thromb Haemost 114:593–602. https://doi.org/10.1160/TH14-12-1090

    Article  PubMed  Google Scholar 

  30. Moreau T, Evans AL, Vasquez L et al (2016) Corrigendum: Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 8:15076. https://doi.org/10.1038/ncomms11208

    Article  CAS  Google Scholar 

  31. Dalby A, Ballester-Beltran J, Lincetto C et al (2018) Transcription factor levels after forward programming of human pluripotent stem cells with GATA1, FLI1, and TAL1 determine megakaryocyte versus erythroid cell fate decision. Stem cell reports 11:1462–1478. https://doi.org/10.1016/j.stemcr.2018.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang H, Yu M, Akie TE et al (2009) Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Mol Cell Biol 29:4103–4115. https://doi.org/10.1128/MCB.00090-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tijssen MR, Cvejic A, Joshi A et al (2011) Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell 20:597–609. https://doi.org/10.1016/j.devcel.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palii CG, Cheng Q, Gillespie MA et al (2019) Single-cell proteomics reveal that quantitative changes in co-expressed lineage-specific transcription factors determine cell fate. Cell Stem Cell 24:812-820.e5. https://doi.org/10.1016/j.stem.2019.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soler E, Andrieu-Soler C, de Boer E et al (2010) The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev 24(3):277–289. https://doi.org/10.1101/gad.551810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li L, Freudenberg J, Cui K et al (2013) Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood 121(22):4575–4585. https://doi.org/10.1182/blood-2013-01-479451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giraud G, Kolovos P, Boltsis I et al (2021) Interplay between FLI-1 and the LDB1 complex in murine erythroleukemia cells and during megakaryopoiesis. iScience 24(3):102210. https://doi.org/10.1016/j.isci.2021.102210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D et al (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81:695–704. https://doi.org/10.1016/0092-8674(95)90531-6

    Article  CAS  PubMed  Google Scholar 

  39. Rost MS, Shestopalov I, Liu Y et al (2018) Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish. Blood Adv 2:3418–3427. https://doi.org/10.1182/bloodadvances.2018021865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang C, Sample KM, Gajendran B, Kapranov P, Liu W, Hu A et al (2021) FLI1 induces megakaryopoiesis gene expression through WAS/WIP-dependent and independent mechanisms; implications for Wiskott-Aldrich syndrome. Front Immunol 12:607836. https://doi.org/10.3389/fimmu.2021.607836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bosticardo M, Marangoni F, Aiuti A, Villa A, Grazia RM (2009) Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood 113(25):6288–6295. https://doi.org/10.1182/blood-2008-12-115253

    Article  CAS  PubMed  Google Scholar 

  42. Pereira R, Quang CT, Lesault I et al (1999) FLI-1 inhibits differentiation and induces proliferation of primary erythroblasts. Oncogene 18:1597–1608. https://doi.org/10.1038/sj.onc.1202534

    Article  CAS  PubMed  Google Scholar 

  43. Tamir A, Howard J, Higgins RR et al (1999) Fli-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol Cell Biol 19:4452–4464. https://doi.org/10.1128/MCB.19.6.4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Minas TZ, Han J, Javaheri T, Hong SH, Schlederer M, Saygideğer-Kont Y et al (2015) YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget 6(35):37678–37694. https://doi.org/10.18632/oncotarget.5520

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spyropoulos DD, Pharr PN, Lavenburg KR et al (2000) Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol Cell Biol 20:5643–5652. https://doi.org/10.1128/MCB.20.15.5643-5652.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang XK, Moussa O, LaRue A et al (2008) The transcription factor Fli-1 modulates marginal zone and follicular B cell development in mice. J Immunol 181:1644–1654. https://doi.org/10.4049/jimmunol.181.3.1644

    Article  CAS  PubMed  Google Scholar 

  47. Zochodne B, Truong AH, Stetler K et al (2000) Epo regulates erythroid proliferation and differentiation through distinct signaling pathways: implication for erythropoiesis and Friend virus-induced erythroleukemia. Oncogene 19:2296–2304. https://doi.org/10.1038/sj.onc.1203590

    Article  CAS  PubMed  Google Scholar 

  48. Starck J, Weiss-Gayet M, Gonnet C et al (2010) Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. Blood 116:4795–4805. https://doi.org/10.1182/blood-2010-02-270405

    Article  CAS  PubMed  Google Scholar 

  49. Athanasiou M, Mavrothalassitis G, Sun-Hoffman L et al (2000) FLI-1 is a suppressor of erythroid differentiation in human hematopoietic cells. Leukemia 14:439–445. https://doi.org/10.1038/sj.leu.2401689

    Article  CAS  PubMed  Google Scholar 

  50. Rekhtman N, Radparvar F, Evans T et al (1999) Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 13:1398–1411. https://doi.org/10.1101/gad.13.11.1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eisbacher M, Holmes ML, Newton A et al (2003) Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding. Mol Cell Biol 23:3427–3441. https://doi.org/10.1128/MCB.23.10.3427-3441.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujiwara Y, Browne CP, Cunniff K et al (1996) Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 93:12355–12358. https://doi.org/10.1073/pnas.93.22.12355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jagadeeswaran P, Lin S, Weinstein B et al (2010) Loss of GATA1 and gain of FLI1 expression during thrombocyte maturation. Blood Cells Mol Dis 44:175–180. https://doi.org/10.1016/j.bcmd.2009.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frontelo P, Manwani D, Galdass M et al (2007) Novel role for EKLF in megakaryocyte lineage commitment. Blood 110:3871–3880. https://doi.org/10.1182/blood-2007-03-082065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Perkins AC, Sharpe AH, Orkin SH (1995) Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375:318–322. https://doi.org/10.1038/375318a0

    Article  CAS  PubMed  Google Scholar 

  56. Singleton BK, Burton NM, Green C et al (2008) Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood 112:2081–2088. https://doi.org/10.1182/blood-2008-03-145672

    Article  CAS  PubMed  Google Scholar 

  57. Tallack MR, Perkins AC (2010) Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood. Haematologica 95:144–147. https://doi.org/10.3324/haematol.2009.010017

    Article  PubMed  Google Scholar 

  58. Starck J, Cohet N, Gonnet C et al (2003) Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 23:1390–1402. https://doi.org/10.1128/MCB.23.4.1390-1402.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bouilloux F, Juban G, Cohet N et al (2008) EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 112:576–584. https://doi.org/10.1182/blood-2007-07-098996

    Article  CAS  PubMed  Google Scholar 

  60. Svenson JL, Chike-Harris K, Amria MY et al (2010) The mouse and human Fli1 genes are similarly regulated by Ets factors in T cells. Genes Immun 11(2):161–172. https://doi.org/10.1038/gene.2009.73

    Article  CAS  PubMed  Google Scholar 

  61. Melet F, Motro B, Rossi DJ et al (1996) Generation of a novel Fli-1 protein by gene targeting leads to a defect in thymus development and a delay in Friend virus-induced erythroleukemia. Mol Cell Biol 16:2708–2718. https://doi.org/10.1128/MCB.16.6.2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Eddy A, Teng YT et al (1995) An immunological renal disease in transgenic mice that overexpress Fli-1, a member of the ets family of transcription factor genes. Mol Cell Biol 15:6961–6970. https://doi.org/10.1128/MCB.15.12.6961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smeets MF, Chan AC, Dagger S et al (2013) Fli-1 overexpression in hematopoietic progenitors deregulates T cell development and induces pre-T cell lymphoblastic leukaemia/lymphoma. PLoS ONE 8:e62346. https://doi.org/10.1371/journal.pone.0062346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smeets MF, Wiest DL, Izon DJ (2014) Fli-1 regulates the DN2 to DN3 thymocyte transition and promotes gammadelta T-cell commitment by enhancing TCR signal strength. Eur J Immunol 44:2617–2624. https://doi.org/10.1002/eji.201444442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen Z, Arai E, Khan O, Zhang Z, Ngiow SF, He Y et al (2021) In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184(5):1262-1280.e22. https://doi.org/10.1016/j.cell.2021.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hodge DR, Li D, Qi SM, Farrar WL (2002) IL-6 induces expression of the Fli-1 proto-oncogene via STAT3. Biochem Biophys Res Commun 292(1):287–291. https://doi.org/10.1006/bbrc.2002.6652

    Article  CAS  PubMed  Google Scholar 

  67. Lennard Richard ML, Nowling TK, Brandon D, Watson DK, Zhang XK (2015) Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation. Mol Immunol 63(2):566–573. https://doi.org/10.1016/j.molimm.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  68. Lennard Richard ML, Sato S, Suzuki E, Williams S, Nowling TK, Zhang XK (2014) The Fli-1 transcription factor regulates the expression of CCL5/RANTES. J Immunol 193(6):2661–2668. https://doi.org/10.4049/jimmunol.1302779

    Article  CAS  PubMed  Google Scholar 

  69. Lennard Richard ML, Brandon D, Lou N, Sato S, Caldwell T, Nowling TK et al (2016) Acetylation impacts Fli-1-driven regulation of granulocyte colony stimulating factor. Eur J Immunol 46(10):2322–2332. https://doi.org/10.1002/eji.201646315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lou N, Lennard Richard ML, Yu J, Brandon M, Zhang XK (2017) The Fli-1 transcription factor is a critical regulator for controlling the expression of chemokine C-X-C motif ligand 2 (CXCL2). Mol Immunol 81:59–66. https://doi.org/10.1016/j.molimm.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  71. Li P, Goodwin AJ, Cook JA, Halushka PV, Zhang XK, Fan H (2019) Fli-1 transcription factor regulates the expression of caspase-1 in lung pericytes. Mol Immunol 108:1–7. https://doi.org/10.1016/j.molimm.2019.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang X, Lennard Richard M, Li P, Henry B, Schutt S, Yu XZ et al (2021) Expression of GM-CSF is regulated by Fli-1 transcription factor, a potential drug target. J Immunol 206(1):59–66. https://doi.org/10.4049/jimmunol.2000664

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Oates JC, Helke KL, Gilkeson GS, Zhang XK (2021) Camptothecin and topotecan, inhibitors of transcription factor Fli-1 and topoisomerase, markedly ameliorate lupus nephritis in NZBWF1 mice and reduce the production of inflammatory mediators in human renal cells. Arthritis Rheumatol 73(8):1478–1488. https://doi.org/10.1002/art.41685

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki E, Williams S, Sato S et al (2013) The transcription factor Fli-1 regulates monocyte, macrophage and dendritic cell development in mice. Immunology 139:318–327. https://doi.org/10.1111/imm.12070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Masuya M, Moussa O, Abe T et al (2005) Dysregulation of granulocyte, erythrocyte, and NK cell lineages in Fli-1 gene-targeted mice. Blood 105:95–102. https://doi.org/10.1182/blood-2003-12-4345

    Article  CAS  PubMed  Google Scholar 

  76. Starck J, Mouchiroud G, Gonnet C et al (1999) Unexpected and coordinated expression of Spi-1, Fli-1, and megakaryocytic genes in four Epo-dependent cell lines established from transgenic mice displaying erythroid-specific expression of a thermosensitive SV40 T antigen. Exp Hematol 27:630–641. https://doi.org/10.1016/s0301-472x(99)00006-5

    Article  CAS  PubMed  Google Scholar 

  77. Kennedy M, Firpo M, Choi K et al (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386(6624):488–493. https://doi.org/10.1038/386488a0

    Article  CAS  PubMed  Google Scholar 

  78. Huber TL, Kouskoff V, Fehling HJ et al (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432(7017):625–630. https://doi.org/10.1038/nature03122

    Article  CAS  PubMed  Google Scholar 

  79. Iwafuchi-Doi M, Zaret KS (2016) Cell fate control by pioneer transcription factors. Development 143(11):1833–1837. https://doi.org/10.1242/dev.133900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilson NK, Foster SD, Wang X et al (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7(4):532–544. https://doi.org/10.1016/j.stem.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  81. Bergiers I, Andrews T, Vargel Bölükbaşı Ö et al (2018) Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. Elife 7:e29312. https://doi.org/10.7554/eLife.29312

    Article  PubMed  PubMed Central  Google Scholar 

  82. Azimi A, Tuominen R, Costa Svedman F, Caramuta S, Pernemalm M, Frostvik Stolt M et al (2017) Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death Dis 8(8):e3029. https://doi.org/10.1038/cddis.2017.406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Paulo P, Barros-Silva JD, Ribeiro FR et al (2012) FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosom Cancer 51:240–249. https://doi.org/10.1002/gcc.20948

    Article  CAS  PubMed  Google Scholar 

  84. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P et al (1995) Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92(11):4917–4921. https://doi.org/10.1073/pnas.92.11.4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648. https://doi.org/10.1126/science.1117679

    Article  CAS  PubMed  Google Scholar 

  86. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE et al (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66(7):3396–3400. https://doi.org/10.1158/0008-5472.CAN-06-0168

    Article  CAS  PubMed  Google Scholar 

  87. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR et al (2008) Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 68(1):73–80. https://doi.org/10.1158/0008-5472.CAN-07-5352

    Article  CAS  PubMed  Google Scholar 

  88. Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Setlur SR, Demichelis F, Rubin MA (2009) SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 69(7):2734–2738. https://doi.org/10.1158/0008-5472.CAN-08-4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bonetti P, Testoni M, Scandurra M, Ponzoni M, Piva R, Mensah AA, Rinaldi A, Kwee I, Tibiletti MG, Iqbal J, Greiner TC, Chan WC et al (2013) Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma. Blood 122(13):2233–2241. https://doi.org/10.1182/blood-2013-01-475772

    Article  CAS  PubMed  Google Scholar 

  90. Mesquita B, Lopes P, Rodrigues A, Pereira D, Afonso M, Leal C, Henrique R, Lind GE, Jerónimo C, Lothe RA, Teixeira MR (2013) Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes. Breast Cancer Res Treat 138(1):37–45. https://doi.org/10.1007/s10549-013-2408-2

    Article  CAS  PubMed  Google Scholar 

  91. Zhang J, McCastlain K, Yoshihara H, Xu B, Chang Y, Churchman ML, Wu G, Li Y, Wei L, Iacobucci I et al (2016) Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet 48(12):1481–1489. https://doi.org/10.1038/ng.3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ando M, Kawazu M, Ueno T, Koinuma D, Ando K, Koya J, Kataoka K, Yasuda T, Yamaguchi H, Fukumura K et al (2016) Mutational landscape and antiproliferative functions of ELF transcription factors in human cancer. Cancer Res 76(7):1814–1824. https://doi.org/10.1158/0008-5472.CAN-14-3816

    Article  CAS  PubMed  Google Scholar 

  93. Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, Olsson L, Orsmark-Pietras C, von Palffy S, Askmyr M, Rissler M, Schrappe M, Cario G et al (2016) Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun 7:11790. https://doi.org/10.1038/ncomms11790

    Article  PubMed  PubMed Central  Google Scholar 

  94. Seki M, Kimura S, Isobe T, Yoshida K, Ueno H, Nakajima-Takagi Y, Wang C, Lin L, Kon A, Suzuki H et al (2017) Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet 49(8):1274–1281. https://doi.org/10.1038/ng.3900

    Article  CAS  PubMed  Google Scholar 

  95. Bose R, Karthaus WR, Armenia J, Abida W, Iaquinta PJ, Zhang Z, Wongvipat J, Wasmuth EV, Shah N, Sullivan PS et al (2017) ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546(7660):671–675. https://doi.org/10.1038/nature22820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Budka JA, Ferris MW, Capone MJ, Hollenhorst PC (2018) Common ELF1 deletion in prostate cancer bolsters oncogenic ETS function, inhibits senescence and promotes docetaxel resistance. Genes Cancer 9(5–6):198–214. https://doi.org/10.18632/genesandck;ancer.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luk IY, Reehorst CM, Mariadason JM (2018) ELF3, ELF5, EHF and SPDEF transcription factors in tissue homeostasis and cancer. Molecules 23(9):2191. https://doi.org/10.3390/molecules23092191

    Article  CAS  PubMed Central  Google Scholar 

  98. Zaliova M, Potuckova E, Hovorkova L et al (2019) ERG deletions in childhood acute lymphoblastic leukemia with DUX4 rearrangements are mostly polyclonal, prognostically relevant and their detection rate strongly depends on screening method sensitivity. Haematologica 104(7):1407–1416. https://doi.org/10.3324/haematol.2018.204487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yuan X, Dai M, Xu D (2020) TERT promoter mutations and GABP transcription factors in carcinogenesis: more foes than friends. Cancer Lett 493:1–9. https://doi.org/10.1016/j.canlet.2020.07.003

    Article  CAS  PubMed  Google Scholar 

  100. Montgomery-Goecker C, Koduru P, Botten G, Xu J, Ghisoli M, Goldman SC et al (2021) Mixed phenotype acute leukemia, b/myeloid (bilineal and biphenotypic), with t(2;22)(q35;q12);EWSR1-FEV. J Pediatr Hematol Oncol 43(3):e388–e394. https://doi.org/10.1097/MPH.0000000000001934

    Article  CAS  PubMed  Google Scholar 

  101. Suico MA, Shuto T, Kai H (2017) Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 9(3):168–177. https://doi.org/10.1093/jmcb/mjw051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Erkizan HV, Kong Y, Merchant M et al (2009) A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med 15:750–756. https://doi.org/10.1038/nm.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grohar PJ, Griffin LB, Yeung C et al (2011) Ecteinascidin 743 interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. Neoplasia (New York, N.Y.) 13:145–153. https://doi.org/10.1593/neo.101202

    Article  CAS  PubMed Central  Google Scholar 

  104. Zöllner SK, Amatruda JF, Bauer S et al (2021) Ewing sarcoma-diagnosis, treatment, clinical challenges and future perspectives. J Clin Med 10(8):1685. https://doi.org/10.3390/jcm10081685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li YJ, Zhao X, Vecchiarelli-Federico LM et al (2012) Drug-mediated inhibition of Fli-1 for the treatment of leukemia. Blood Cancer J 2:e54. https://doi.org/10.1038/bcj.2011.52

    Article  PubMed  PubMed Central  Google Scholar 

  106. Song J, Yuan C, Yang J et al (2018) Novel flavagline-like compounds with potent Fli-1 inhibitory activity suppress diverse types of leukemia. FEBS J 285:4631–4645. https://doi.org/10.1111/febs.14690

    Article  CAS  PubMed  Google Scholar 

  107. Liu T, Xia L, Yao Y et al (2019) Identification of diterpenoid compounds that interfere with Fli-1 DNA binding to suppress leukemogenesis. Cell Death Dis 10:117. https://doi.org/10.1038/s41419-019-1363-1

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hou C, Mandal A, Rohr J, Tsodikov OV (2020) Allosteric interference in oncogenic FLI1 and ERG transactions by mithramycins. Structure 29(5):404-412.e4. https://doi.org/10.1016/j.str.2020.11.012

    Article  CAS  PubMed  Google Scholar 

  109. Rajesh Y, Biswas A, Kumar U, Banerjee I, Das S, Maji S, Das SK, Emdad L, Cavenee WK, Mandal M, Fisher PB (2020) Lumefantrine, an antimalarial drug, reverses radiation and temozolomide resistance in glioblastoma. Proc Natl Acad Sci USA 117(22):12324–12331. https://doi.org/10.1073/pnas.1921531117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yao Y, Liu W, Gajendran B, Wang C, Zacksenhaus E, Sample KM, Varier KM, Hao X, Ben-David Y (2021) Ubash3b promotes TPA-mediated suppression of leukemogenesis through accelerated downregulation of PKCδ protein. Biochimie 184:8–17. https://doi.org/10.1016/j.biochi.2021.02.001

    Article  CAS  PubMed  Google Scholar 

  111. Mora-Garcia P, Wei J, Sakamoto KM (2005) G-CSF induces stabilization of ETS protein Fli-1 during myeloid cell development. Pediatr Res 57(1):63–66. https://doi.org/10.1203/01.PDR.0000147729.55592.2C

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank contribution of Chunlin Wang, Wuling Liu, and Analin Hu in preparation of this manuscript.

Funding

This work was supported by research grants from the Natural National Science Foundation of China (U1812403 and 21867009), the Science and Technology Department of Guizhou Province innovation and project grants (QKHPTRC[2019]5627), and the 100 Leading Talents of Guizhou Province to Y.B.-D.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yaacov Ben-David.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Consent to participate

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-David, Y., Gajendran, B., Sample, K.M. et al. Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cell. Mol. Life Sci. 79, 163 (2022). https://doi.org/10.1007/s00018-022-04160-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04160-1

Keywords

Navigation